
Abstract— In this paper we propose a method for robust
dense RGB-D SLAM in dynamic environments which detects
moving objects and simultaneously reconstructs the background
structure. Dynamic environments are challenging for visual
SLAM as moving objects can impair camera pose tracking and
cause corruptions to be integrated into the map. While most
methods employ implicit robust penalizers or outlier filtering
techniques in order to handle moving objects, our approach
is to simultaneously estimate the camera motion as well as a
probabilistic static/dynamic segmentation of the current RGB-
D image pair. This segmentation is then used for weighted dense
RGB-D fusion to estimate a 3D model of only the static parts
of the environment. By leveraging the 3D model for frame-
to-model alignment, as well as static/dynamic segmentation,
camera motion estimation has reduced overall drift — as well
as being more robust to the presence of dynamics in the scene.
Demonstrations are presented which compare the proposed
method to comparable state-of-the-art approaches using both
static and dynamic sequences. The proposed method achieves
similar performance in static environments and improved
accuracy and robustness in dynamic scenes.

I. INTRODUCTION

State-of-the-art dense visual SLAM methods can produce
impressive reconstructions of large indoor scenes. These
approaches, however, often rely on certain assumptions such
as the environment being static, the camera moving smoothly
and there being sufficient geometry or texture in the scene for
reliable tracking. We focus specifically on the assumption of
a static scene. Robust operation in the presence of dynamic
elements is an open problem. For example, most odometry
methods perform registration between the current image
and a previous reference and the estimated transformation
between these images is assumed to originate from the
camera motion. Dynamic elements violate this assumption
and can cause failures in pose tracking. In addition, if not
actively detected and segmented, dynamic objects can be
fused into the map which can lead to irreversible corruptions.
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Improving the performance of SLAM in dynamic environ-
ments is an important problem particularly for mobile robots.
It is seldom the case that robots operate in strictly static
environments and such a requirement would significantly
limit the extent to which they could be successfully deployed.
In example applications, co-bots such as the Rethink Baxter
carry out assembly tasks among moving equipment and
infrastructure. Mobile service robots face similar challenges,
as their environments are also inhabited by people.

In this work we address this problem by jointly estimating
the motion of an RGB-D camera and segmenting the scene
it observes into static and dynamic parts. Camera tracking is
performed by aligning incoming frames with a dense surfel-
based model of the environment (similarly to ElasticFusion
[1]). By decoupling the static and moving parts, we can build
a background model which fuses only the static elements.

Effective detection and segmentation of moving objects
typically requires temporal feedback or a multi-frame formu-
lation. We demonstrate that background 3D reconstruction
is an efficient way to propagate this temporal information
without incurring significant runtime costs. Also, the result-
ing map is more meaningful in the sense that it only contains
structural elements and the static objects present in the scene.

The contributions of the proposed work are as follows:

• A new formulation to simultaneously estimate the mo-
tion of the camera and to segment the static objects
within the current frame.

• A dense mapping system which fuses only the tempo-
rally consistent data (i.e. it stores useful information of
what was static in the past).

• An extensive evaluation demonstrating that the proposed
algorithm outperforms state-of-the-art solutions in dy-
namic environments and achieves a very competitive
runtime (∼ 30 ms/frame).

The paper is organized as follows. We review state-of-
the-art visual SLAM methods as well as several approaches
which tackle dynamic environments in Section II. Section III
describes the overall structure of our system, with Sections
IV and V giving details about our proposed approaches for si-
multaneous estimation of camera motion and static/dynamic
segmentation and weighted fusion. Section VI states specific
details related to implementation and parameter tuning. We
present our evaluation in Section VII where we compare our
method against related state-of-the-art works. Section VIII
concludes our work and states future directions for research.

The code and the demonstration video can be found here:

http://www.edinburgh-robotics.org/students/raluca-scona
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II. RELATED WORK

Dense visual SLAM in indoor environments has achieved
significant progress through the emergence of commodity
3D cameras such as the Microsoft Kinect or the Asus Xtion.
A seminal work in this field is KinectFusion [2], the first
system which used RGB-D data to perform real-time dense
tracking and data fusion. The approach used a volumetric
representation of fixed size integrated on a GPU. Ongoing
research has produced systems with impressive performance,
ranging from scalable extensions [3], [4] and loop closure
capabilities [5], [6], to methods which consider run-time
limitations [7], [8] in order to enable 3D scanning and
mapping of large indoor scenes to be as robust and easy
to use as possible.

While most existing approaches focus on scanning static
environments, specific efforts have also been made to in-
crease robustness in dynamic scenes.

Implicit Handling of Dynamic Elements: It is common
to use a robust cost function within the visual odometry front-
end which penalizes the contribution of high-residual points
and implicitly increases the robustness of pose estimation
to un-modeled effects. Gutierrez et al. [9] compare different
robust functions focusing on the quality of the resulting pose
estimate, while Kerl et al. [10][8] demonstrate robustness
to the presence of small moving objects in the scene. These
solutions however are insufficient and fail when moving parts
occupy a significant portion of the image.

Reconstruction-focused approaches, such as ElasticFusion
[1] as well as the method of Keller et al. [4], require that
points be repeatedly observed through consecutive frames
before becoming integrated within the 3D model. Similarly,
in these methods dynamic elements are not explicitly de-
tected and handled, resulting in robustness which is limited
to small motions in the scene.

Outlier Rejection Strategies: A common strategy is to
treat dynamically moving objects as noise which must be
detected and filtered out.

For Keller et al. [4], input points with no close model
correspondence are used to seed a region-growing proce-
dure to segment the current image into static and dynamic
parts. Subsequently, model points which are matched with
dynamic input points are removed from the reconstruction.
This approach can only be demonstrated once a confident
reconstruction of the scene is in place.

Meanwhile, in DTAM [11], which is a monocular dense
mapping system, the authors discard pixels with a pho-
tometric error higher than a specific threshold. For ORB-
SLAM [12], [13] the authors enforce an effective survival-
of-the-fittest strategy which judges the validity of keyframes
and the points used for pose tracking. By being generous
when spawning new keyframes and points within the system
and by enforcing highly conservative culling strategies, they
demonstrate impressive robustness and versatility.

Nevertheless, within these approaches, no spatial or tem-
poral coherence is enforced among the detected dynamic
points between consecutive frames.
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Fig. 1: System architecture: the process starts by receiving a new
RGB-D image (CD, ZD) and grouping its pixels into geometric
clusters C. A prediction (CM , ZM ) is rendered from the model
and the last pose estimate T (ξ) and used for joint alignment
and background segmentation. Both results are then exploited for
weighted fusion of the static clusters of CD, ZD with the map.

Methods Enforcing Spatial or Temporal Coherence:
Jaimez et al. [14] introduces a joint visual odometry and
scene flow estimation method. Similarly, BaMVO [15] is an
odometry method which reconstructs the environment over
the previous 4 frames by temporal propagation. As both are
frame-to-frame methods, they will incur unbounded drift in
the pose estimate over time. Rünz et al. [16] proposed a
method to reconstruct and track each moving object with a
separate 3D model, being one of the first real-time methods
to perform dense tracking and fusion of multiple objects so
as to explicitly handle dynamics and enforce both spatial and
temporal coherence.

Finally, it is possible to robustify visual SLAM in dynamic
environments through the use of motion priors using inertial
measurement units [17] or a robot’s odometry [18], but for
many use-cases it is attractive to focus on improving the
accuracy of pose tracking and map building using only a
single camera.

III. FRAMEWORK AND NOTATION

We propose a new SLAM system for RGB-D cameras
which focuses on background segmentation and filtering of
dynamic objects in the foreground. This section provides a
general description of its main components (Fig. 1); each
individual component of the algorithm will be described in
detail in the following sections.

The input to our system is a stream of registered RGB-D
images. An RGB-D pair is represented as a colour image
CD : Ω → R3 and a depth image ZD : Ω → R, where
Ω ⊂ R2 is the image plane. We also compute an intensity
image ID : Ω→ R from CD for use in the algorithm.

First, every incoming pair (ID, ZD) is segmented into K
geometric clusters C = {Ci, i = 1, ...,K} by applying K-
Means on the 3D coordinates of the scene points (as de-
scribed in [14]). In order to reduce the overall computational
complexity, each cluster is assumed to behave as a rigid body,
which allows us to solve the static/dynamic segmentation
problem cluster-wise as opposed to pixel-wise. This is an
acceptable approximation because we are not interested in
estimating accurate motions of moving objects, but are rather



focused on building a conservative reconstruction of the
static structures in the scene.

Second, an artificial image pair (IM , ZM ) is rendered by
placing a virtual camera at the previous camera pose estimate
within the current map of the static scene constructed up to
that point. Given the current images (ID, ZD) and the last
prediction (IM , ZM ), our novel step is to jointly obtain the
camera motion ξ ∈ se(3) and a motion-based segmentation
of the scene between the two time instances. Each cluster i
is assigned a score bi ∈ [0, 1] which corresponds to the level
of dynamism: b ' 1 corresponds to static clusters, b ' 0
to moving clusters and 0 < b < 1 to intermediate levels of
uncertainty.

After the solution to the joint estimation problem is
calculated, the clusters and scores are used to compute a
per-pixel segmentation image BD for each point belonging
to the background, which, together with the current colour
and depth images (CD, ZD), is used for weighted 3D fusion.

IV. JOINT ESTIMATION OF THE CAMERA MOTION AND
THE SCENE SEGMENTATION

To estimate these two joint properties, we propose a new
formulation based on the minimization of two energy terms:

min
ξ,b
{D(ξ, b) + S(b)} s.t. bi ∈ [0, 1] ∀i (1)

where b represents the full set of scores. The term D(ξ, b)
encodes direct image alignment by enforcing photometric
and geometric consistency only for pixels that belong to
static clusters. The second term S(b) complements D(ξ, b)
by forcing clusters to be segmented as dynamic when their
residuals are very high, and vice versa. It also includes spatial
regularization to encourage a smooth segmentation of the
clusters, and exploits prior geometric knowledge to help the
optimization converge to the correct minimum. Next, we
present the formulation of D(ξ, b) and S(b) and describe
how the overall minimization problem is tackled.

A. Camera Motion

For every new RGB-D pair, the incremental motion of
the camera is computed by minimizing the geometric and
photometric reprojection errors between the current RGB-D
image and the last prediction obtained from the map. The
respective reprojection errors (or residuals) are defined as:

rpZ(ξ) = ZM (W(xp, ξ))−
∣∣T (ξ)π−1(xp, ZD(xp))

∣∣
z

(2)

rpI (ξ) = IM (W(xp, ξ))− ID(xp) , (3)

where xp ∈ Ω represents the coordinates of a given pixel p
and |•|z denotes the z-coordinate of a 3D point. The function
π : R3 → R2 projects 3D points onto the image plane
according to the camera’s pinhole model. T (ξ) ∈ SE(3) is
the homogeneous transformation associated to the twist ξ.
The warping function is given by:

W(xp, ξ) = π(T (ξ)π−1(x, ZD(xp))) . (4)

Similar procedures for minimizing these residuals are de-
scribed in [14], [19].
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Fig. 2: Cauchy robust penalty and the different regions defined to
distinguish between the clusters that are likely to be static (b ↑↑)
or dynamic (b ↓↓).

The novelty of our formulation is to weight these residuals
with the scores b so that only residuals associated to static
parts of the scene have a high contribution:

D(ξ, b) =
N∑
p=1

bi(p)

[
F (wpZr

p
Z(ξ)) + F (αIw

p
Ir
p
I (ξ))

]
, (5)

where N is the overall number of pixels and bi(p) refers
to the score of the cluster i containing p. As the geometric
and intensity terms compute errors with different units, the
parameter αI re-scales the intensity term so that it has
a comparable effect in scale as the geometric term. The
function F (r) is the Cauchy robust penalty:

F (r) =
c2

2
log

(
1 +

(r
c

)2)
, (6)

where c represents the inflection point of F (r) and controls
how robustly residuals are minimized. Lastly, wZ and wI
weight the photometric and geometric residuals according to
the noise of the measurements (σZ and σI ) and also penalize
occlusions and discontinuities observed through high spatial
or temporal gradients:

wZ =
1

kZσ σ
2
Z + |∇xZD|+ |ZD − ZM |

, (7)

wI =
1

kIσσ
2
I + |∇xID|+ |ID − IM |

. (8)

In (7) and (8), the parameters kZσ and kIσ control the relative
importance of the noise against the derivatives.

B. Static / Dynamic Segmentation
The objective of the second term in (1) is to classify

clusters with average high residuals as dynamic and those
with low residuals as static. The underlying idea is that
clusters with high residuals are the ones whose relative
motion with respect to the camera does not coincide with
the camera motion itself. In order to implement this concept
we must quantify what a ‘high residual’ is.

Our assumption is that large residuals correspond to those
significantly higher than the parameter c, i.e. those lying
on the flatter sides of the function F (r) (see Fig. 2).
The following term sets this threshold within the overall
minimization problem:

SD(b) =
K∑
i=1

2(1− bi)F (ĉ)Ki (9)



The total number of pixels in each cluster i is represented
by Ki, and ĉ > c is a heuristically selected threshold which
defines the frontier between low and high residuals. The
combination of this term with (5) basically encourages bi to
be as low as possible (to a minimum of 0) when the average
residual of cluster i is higher than ĉ; otherwise it favours
high values of bi (to a maximum of 1).

Furthermore, we include a regularization term that encour-
ages contiguous clusters to have a similar score:

SR(b) = λR

K∑
i=1

K∑
j=i+1

Gij (bi − bj)2 . (10)

In (10), Gij is a connectivity map: it is equal to 1 when
clusters i and j are contiguous in space and it is 0 otherwise.
The parameter λR weights SR(b) with respect to the other
terms.

Lastly, we add a geometric constraint that exploits the
fact that moving objects do not appear in our map and
therefore the depth differences between ZD and ZM will
be significantly high for moving clusters. This constraint is
expressed as a segmentation prior:

SP (b) = λP

K∑
i=1

(
bi − bPi

)2
(11)

with

bPi = 1− kp
∑Ki

k=1|ZD(xk)− ZM (xk)|
Ki

, (12)

where kp controls how high depth differences should be
to enforce a dynamic scoring and λP is the parameter
that weights this constraint within the overall optimization.
Admittedly, (11) has some degree of redundancy with (5),
however, (12) computes depth differences directly without
any pre-weighting as do (7) and (8). This provides additional
evidence of the presence of moving objects.

The three terms described above only depend on b. For
the sake of clarity we group them into the combined term
S(b) which is used in (1):

S(b) = SD(b) + SR(b) + SP (b) . (13)

C. Solver

Since (1) involves direct image alignment, the whole
minimization problem must be solved within a coarse-to-
fine scheme. This implies building a pyramid of images
and aligning them from the coarsest to the finest level.
The segmentations obtained at the intermediate levels of the
pyramid are stored and used to initialize the solver at the
following level, thus allowing the algorithm to converge to
the right segmentation at the different levels of the pyramid.

At each level, the term D(ξ, b) is nonlinear and non-
convex with respect to ξ. However, the combined optimiza-
tion problem is convex and can be solved analytically with
respect to b. Therefore, we use iteratively re-weighted least
squares (IRLS) to minimize (1) with respect to the camera
motion ξ and obtain the close-form solution for b after
every iteration of the IRLS algorithm. Decoupling ξ from b

within the solver allows us to compute the solution for each
efficiently, while the tight alternation of those two steps leads
to good rate of convergence.

V. SURFEL-BASED 3D RECONSTRUCTION

The 3D model is represented as an unordered list of
surfels, as described in the work of Keller et al. [4] and
made available through the open-source implementation of
Whelan et al. [1]. A surfel is a 3D disk, with associated
position and normal p,n ∈ R3, colour c ∈ N3, radius
r ∈ R, viability w ∈ [0, 1] (where w → 1 means viable),
initialization timestamp t0, timestamp of latest update t and
counter h ∈ N representing the number of times the surfel
has been updated.

At every timestep, our system takes as input the last
RGB-D pair (CD, ZD) as well as the per-pixel segmentation
image BD of each point belonging to the background. We
maintain a fused colored model for visualization purposes
but convert to intensity when rendering an image prediction.

We follow the same approach as [1], [4] for pre-processing
and data association. The difference is we propose a strategy
which judges the viability of each surfel in order to enable
the model to remove those surfels that are matched with
dynamic input points. Our fusion approach is listed in
Algorithm 1 and explained below.

A. Surfel Viability

A surfel is considered viable if it is repeatedly observed
and matched with static input points. These conditions ensure
that a viable surfel is both not spurious and static. Only in
this case do we impose that w → 1. To achieve this, each
new surfel is introduced into the model with low viability
w → 0. On subsequent observations, w is updated through
a running sum of the log-odds probabilities of matching
input points. This strategy is suitable to our application as
viability only increases through repeated matches with static
points (BiD > 0.5) and automatically decreases with dynamic
matches (BiD < 0.5):

sign
(

ln

(
w

1− w

))
=


−1 if w < 0.5

0 if w = 0.5

1 otherwise
. (14)

B. Fusion

During fusion, a weighted average scheme is used to
update a surfel’s position, color and normal. Besides BD,
we employ two additional weights to represent the quality
of each input point:

1) For each pixel i, a Gaussian weight γiD ∈ [0, 1] biasing
in favor of points close to the central pixel xc [4]:

γiD = exp

(
−||xi − xc||

2σ2||xc||

)
. (15)

2) A velocity weight vD ∈ [0, 1] biasing in favor of points
seen during slow motion:

vD = max

(
1− 1−max(||ξ||, 0.15)

0.15
, 0.5

)
. (16)



Algorithm 1: Weighted Surfel Fusion
Input: CD, ZD, BD
sD ← generate input surfels();
foreach siD do

skM ← search for model correspondence();
if skM found then

compute weights(γiD, vD) ;
//Compute input viability

wiD ← min(BiD, γ
i
D, v

i
D);

//Truncate to avoid early saturation

wiM ← max(0.01,min(0.99, wiM ));
wiD ← max(0.01,min(0.53, wiD));

//Update position, colour and normal

through weighted average scheme

kiM ←
hiMw

i
Mk

i
M + wiDk

i
D

hiMw
i
M + wiD

;

∀k ∈ {p, c,n};

//Update viability by sum of log-odds

l← ln

(
wkM

1− wkM

)
+ ln

(
wiD

1− wiD

)
;

wkM ← 1− 1

1 + exp(l)
;

//Update history counter

hkM ← hkM + 1;
else

if BiD > 0.5 then
//Add new surfels

wiD ← α where α→ 0;
hiD ← 1;

While the first term weighs points based on the assumption
that measurements closer to the camera center are more ac-
curate, the second penalizes the influence of points recorded
during fast motion which would introduce blur within the
model.

C. Surfels Removal

Finally, a cleaning stage removes surfels for which w <
0.5 for more than 10 consecutive frames. We also perform
free-space violation checks to remove points remaining in
front of viable surfels. This ensures that dynamic objects and
noisy measurements are removed from the map and a clean
representation of the environment structure is maintained in
the long term.

VI. IMPLEMENTATION DETAILS

A. Initialization

As we rely on a map for both odometry and static/dynamic
segmentation of the scene, we require an initialization stream

to generate the first reliable map. The initial frames (first 1-
2 seconds) observed by the system should contain no more
than 20-30% of moving elements in order to allow for a
successful initialization of the map.

Our current formulation starts by aligning the first two
RGB-D pairs read from the camera following the same
procedure described in Section IV. By solving (1) we also
obtain a segmentation of the last image (BD) that we use
to generate the first instance of the map. After this first step
the algorithm always aligns the incoming RGB-D pairs with
the last prediction obtained from the map.

B. Analyzing and processing residuals

Among the parameters presented in Section IV, the most
important ones are c and ĉ (see Fig. 2). The parameter c is
commonly chosen as a linear function of the median or the
median absolute deviation (MAD) of the residuals [9], [20].
Since this metric is computationally expensive, we sacrifice
accuracy and compute the mean (r̄) of the residuals instead:

r̄ =
1

2N

N∑
p=1

|wpZr
p
Z(ξ)|+ |αIwpIr

p
I (ξ)| . (17)

Note that r̄ actually represents the mean of the pre-weighted
residuals. This computation is performed before each itera-
tion of the IRLS solver described in Section IV-C (for the
first iteration ξ is assumed to be null). Afterwards, to provide
robust estimates we set c = 0.5 r̄.

On the other hand, for ĉ we select a lower value in order
to segment out dynamic parts more aggressively. The reason
to do that is that false positives (static regions segmented as
dynamic) are preferable to false negatives (dynamic regions
segmented as static). Moreover, we set this threshold to be
even lower during the initialization phase to be sure that the
initial map is built only using static parts of the scene:

ĉ =

{
max(rmin, r̄) During initialization
1.5 max(rmin, r̄) Otherwise

. (18)

The variable rmin sets the minimum residual value below
which clusters should always be segmented as static. When
images are perfectly aligned the mean residual c̄ is very low
and the threshold 1.5 c̄ would also be very low, which would
lead to having static clusters segmented as being dynamic —
irrespective of how precise the alignment is. The introduction
of rmin solves this problem.

VII. EVALUATION

We perform a thorough evaluation of our approach in
static and dynamic environments. First, results are presented
for several sequences of the Freiburg dataset [21]. This
dataset has a ground truth of the camera trajectory, which
allows us to measure both relative and absolute drift. The
Freiburg dataset contains a small number of sequences with
high dynamics and, for that reason, we include additional
sequences recorded with a hand-held camera to provide a
more general evaluation with varied scenes and also on
longer trajectories.



Trans. RPE RMSE (cm/s) Rot. RPE RMSE (deg/s)
Sequence VO-SF EF CF BaMVO SF VO-SF EF CF BaMVO SF
fr1/xyz 2.1 1.9 2.3 – 2.3 1.00 0.91 1.34 – 1.42

Static fr1/desk 3.7 2.9 9.0 – 3 1.77 1.48 4.49 – 2.17
Env. fr1/desk2 5.4 7.2 9.2 – 5 2.45 4.07 4.79 – 3.39

fr1/plant 6.1 5.0 8.9 – 10.4 2.00 1.58 3.02 – 3.16
Low

Dynamic
Env.

fr3/sit static 2.4 0.9 01.1 2.4 1.1 0.71 0.30 0.44 0.69 0.43
fr3/sit xyz 5.7 1.6 2.7 4.8 2.8 1.44 0.59 1.00 1.38 0.92

fr3/sit halfsphere 7.5 17.2 3.0 5.8 3.0 2.98 4.56 1.92 2.88 2.11

High
Dynamic

Env.

fr3/walk static 10.1 26.0 22.4 13.3 1.3 1.68 4.77 4.01 2.08 0.38
fr3/walk xyz 27.7 24.0 32.9 23.2 12.1 5.11 4.79 5.55 4.39 2.66

fr3/walk halfsphere∗ 24.8 16.3 31.1 – 5 5.49 5.70 8.45 – 2.18
fr3/walk halfsphere 33.5 20.5 40.0 17.3 20.7 6.69 6.41 13.02 4.28 5.04

TABLE I: Relative Pose Error

Trans. ATE RMSE (cm)
Sequence VO-SF EF CF SF
fr1/xyz 5.1 1.2 1.4 1.4

Static fr1/desk 5.6 2.1 17.7 2.3
Env. fr1/desk2 17.4 5.7 16.8 5.2

fr1/plant 7.8 5.3 12.6 11.3
Low

Dynamic
Env.

fr3/sit static 2.9 0.8 1.1 1.3
fr3/sit xyz 11.1 2.2 2.7 4.0

fr3/sit halfsphere 18.0 42.8 3.6 4.0

High
Dynamic

Env.

fr3/walk static 32.7 29.3 55.1 1.4
fr3/walk xyz 87.4 90.6 69.6 12.7

fr3/walk halfsphere∗ 48.2 48.6 75.6 6.3
fr3/walk halfsphere 73.9 63.8 80.3 39.1

TABLE II: Absolute Trajectory Error

We compare the accuracy of our method, StaticFusion
(SF), against related state-of-the art approaches:
1) The joint visual odometry and scene flow of Jaimez et

al. [14] (VO-SF). As an odometry method designed for
dynamic scenes, a comparison is useful to investigate the
benefits of reconstructing a 3D model of the static scene.

2) ElasticFusion [1] (EF) in order to investigate the per-
formance of a state-of-the-art method designed for static
environments within dynamic scenes.

3) Co-Fusion [16] (CF), as it is a state-of-the-art approach
for tracking and reconstructing multiple moving objects.

4) The background model-based visual odometry of Kim et
al. [15] (BaMVO), which is conceptually related to our
approach but uses a multi-frame strategy instead of frame-
to-model alignment. Since we were unable to replicate
the published results using the open-source release of
this method, we only include numerical results for the
sequences evaluated in the original publication.

The experiments were performed on a workstation with an
Intel(R) Core(TM) i7-3770 CPU at 3.40GHz and a GeForce
GTX 1070 GPU using the Ubuntu 16.04 operating system.
We used registered RGB-D images and maintained default
parameters for the methods we compare against. Regarding
the image resolution, we use QVGA (320 × 240) and keep
the default resolution of the other methods included in the
comparison (VO-SF, BaMVO also use QVGA, the remaining
ones work with VGA).

A. Quantitative Evaluation

Regarding the accuracy of pose estimation, evaluation is
performed through the metrics proposed by Sturm et al. [21]:

• Translational and rotational relative pose error (RPE) to
measure the average local drift per second.

• Translational absolute trajectory error (ATE) to measure
the global quality of the trajectory.

For completeness, sequences recorded in static, low dy-
namic and high dynamic scenes are included within this
evaluation. Results are listed in Tables I and II. It can be
seen that StaticFusion’s performance in static environments
is comparable to that of ElasticFusion regarding both ATE
and RPE criteria. Table II demonstrates the advantage of
frame-to-model alignment strategies over odometry methods
in reducing overall drift. In highly dynamic sequences, our
system outperforms the other approaches for the following
reasons:
• EF is not designed to handle dynamics in the scene. Thus,

moving objects corrupt its 3D reconstruction and, in turn,
its pose estimate.

• VO-SF and BaMVO are odometry-based methods which
cannot recover from poor alignment or segmentation.

• CF works well for slow camera motions but its per-
formance deteriorates noticeably when the speed of the
camera increases.

As mentioned in Section VI, StaticFusion requires sequences
with limited dynamics during the initialization stage of
the model and for this reason it produces high errors on
fr3/walking halfsphere. We include the additional sequence
fr3/walking halfsphere*, which skips the initial 5 seconds
with high dynamics, in order to illustrate the ability of the
method to perform well for that same scene when the initial
frames are not so challenging (note that the other methods
still fail in this case).

In order to illustrate how our background model handles
moving objects, Fig. 3 shows the temporal evolution of the
map built during the sequence fri3/walking static. It can be
seen that the map evolves to reflect changes in the scene. It
efficiently removes moving parts, keeping only the structure
which represents a valuable prior for accurate segmentation
of dynamics.

B. Qualitative Evaluation with a Hand-held Camera

In this section we evaluate our approach in scenes with
varying levels of dynamism. To this end, we have recorded
two sequences with a hand-held RGB-D camera. In the
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Fig. 3: Top: The background reconstruction evolves to reflect changes in the scene. Bottom: Corresponding RGB image (left) and
computed segmentation (right) for each instance, where red means dynamic and blue means static. Between (A) and (C) the model adapts
to remove dynamic objects based on a correct segmentation. The sequence at the instance of (D) contains significant dynamics and the
model provides a valuable prior knowledge of the scene, allowing for correct segmentation and pose estimation.

first sequence the camera observes a person interacting with
objects and performing varied motions at different speeds.
Occasionally the person remains still and close to the camera,
which poses a challenge for the tracking system because it
must be able to segment out the person as soon as they
move in order not to lose track of the sensor. For the second
test we have recorded a ‘selfie sequence’ during which a
person carries the camera while it points at them. This a
very complex test because the person often occupies more
than 50% of the image and looks quasi-static with respect
to the camera (which represents a strong local minimum for
the motion estimate of any method which does not segment
moving parts explicitly).

Results for the first sequence are shown in Fig. 6. It can be
seen that the person is initially inserted in the map because
he does not move, but it is removed as soon as he moves. The
segmentations estimated by StaticFusion are almost perfect
during the whole sequence: the person is always segmented
correctly, as well as the ball and the door when it gets closed.

The second sequence starts and finishes with the camera
at the exact same position (see Fig. 5), which allows us
to measure the overall drift for the full trajectory. It can
be observed that our algorithm is able to provide good
predictions (CM , ZM ) even when the person covers most
of the view of the camera. Moreover, it is able to track
the camera accurately, which seems very complicated for
a system based on direct image alignment.

(A) (B)

Fig. 4: (A) shows how ElasticFusion adds the person multiple times
into the map and eventually fails to estimate the camera motion. In
(B) Co-Fusion finds and tracks multiple independent objects which
do not exist (note that the region surrounded by the blue circle is
part of the person as well).

ElasticFusion [1] and Co-Fusion [16] are also tested with
these sequences, and they both fail to provide good pose
estimates. Figure 4 illustrates some of these failures. Figure
4 (A) shows the map reconstructed by ElasticFusion for the
first sequence before it loses track of the camera (note the
double chair and the misaligned walls). Figure 4 (B) shows
how Co-Fusion finds too many moving objects during the
second sequence and randomly keeps track of those parts
of the scene, destroying the overall map. For that sequence,
with an estimated trajectory lenght of 9.5 metres, the final
drift of our method is just 1.5 centimetres, whereas the drifts
of ElasticFusion and Co-Fusion are of 1.03 metres and 0.88
metres respectively.

VIII. CONCLUSIONS

In this paper we have described a new approach to accu-
rately estimate the motion of an RGB-D camera in the pres-
ence of moving objects. It is based on building and exploiting
a 3D background model that only contains static parts of
the scene, hence its name – StaticFusion. Quantitative and
qualitative results demonstrate that our approach outperforms
state-of-the-art techniques when the tested sequences include
several moving objects, and achieves that level of accuracy
with a very competitive runtime (30 milliseconds).
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Fig. 5: Left: trajectory estimated by StaticFusion for the second
experiment in Section VII-B. Right: Some of input images of this
sequence (first column), together with our predictions for those
same views (second column) and the estimated segmentations (third
column).
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Fig. 6: Top: Evolution of the map built during the first sequence of Section VII-B. Bottom: Some of the sample input images and the
segmentations that StaticFusion provides for them.

Given the rising interest in developing visual odometry and
SLAM algorithms that work in very dynamic environments,
in the future we plan to create a new RGB-D dataset for
this purpose. This dataset should contain sequences with
longer trajectories, fast and slow camera motions and varying
degrees of dynamic elements in the scene. Concerning our
approach, we are interested in investigating multi-frame
strategies that allow us to initialize our background model
even when many moving objects are observed. More efficient
strategies to fuse and remove data from the map will also be
explored.
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