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Abstract— In this paper, we propose an approach for robust
visual Simultaneous Localisation and Mapping (SLAM) in
underwater environments leveraging acoustic, inertial and al-
timeter/depth sensors. Underwater visual SLAM is challenging
due to factors including poor visibility caused by suspended
particles in water, a lack of light and insufficient texture in the
scene. Because of this, many state-of-the-art approaches rely on
acoustic sensing instead of vision for underwater navigation.

Building on the sparse visual SLAM system ORB-SLAM2,
this paper proposes to improve the robustness of camera pose
estimation in underwater environments by leveraging acoustic
odometry, which derives a drifting estimate of the 6-DoF robot
pose from fusion of a Doppler Velocity Log (DVL), a gyroscope
and an altimeter or depth sensor. Acoustic odometry estimates
are used as motion priors and we formulate pose residuals that
are integrated within the camera pose tracking, local and global
bundle adjustment procedures of ORB-SLAM2.

The original design of ORB-SLAM2 supports a single map
and it enters relocalisation when tracking is lost. This is
a significant problem for scenarios where a robot does a
continuous scanning motion without returning to a previously
visited location. One of our main contributions is to enable
the system to create a new map whenever it encounters a
new scene where visual odometry can work. This new map
is connected with its predecessor in a common graph using
estimates from the proposed acoustic odometry. Experimental
results on two underwater vehicles demonstrate the increased
robustness of our approach compared to baseline ORB-SLAM2
in both controlled, uncontrolled and field environments.

I. INTRODUCTION

Visual inspection of underwater structures is an important
application across many industries. In the energy sector, en-
suring the safety of offshore operations requires a continuous
and accurate assessment of subsea infrastructure. This task
could be enormously facilitated through the use of Remotely
Operated Underwater Vehicles (ROVs), equipped with visual
sensors such as stereo cameras.

Traditionally, ROVs have used acoustic sensors for nav-
igation and state estimation, e.g. sonar [1], complemented
by depth sensors [2], Inertial Measurement Unit (IMU)s,
magnetometers or a DVL [3]. However, acoustic sensors
such as sonars tend to be inadequate for detailed visual
inspection. Stereo cameras are better suited to this problem
as they provide the necessary visual information, however
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Fig. 1: Experiments were performed using BlueROV (bottom-
left) and Falcon ROV (bottom-right). Both robots are equipped
with a DVL, a gyroscope, an altimeter (Falcon ROV) / depth
sensor (BlueROV) and a stereo camera. BlueROV was used in
controlled conditions in an indoor tank (top-left) that contained an
underwater motion capture system providing ground truth trajectory
estimates. Falcon ROV was used to collect data in an indoor tank
(in uncontrolled conditions) as well as during field trials in Blyth,
UK (top-right).

their integration within a general navigation and state esti-
mation system is non-trivial due to poor underwater visibility
conditions and complex distortions [4].

In recent years, state-of-the-art visual SLAM systems have
demonstrated impressive performance, which however has
been mostly limited to scenarios where there is sufficient
lighting and texture in the scene. In our underwater sce-
nario, however, visual data is challenging to use due to
low visibility, lack of texture or current disturbances causing
the camera to point away from the asset to be inspected.
Under these conditions, most state-of-the-art visual odometry
systems would fail.

We propose to improve the robustness of visual SLAM in
underwater environments through sensor fusion of a DVL,
gyroscope and an altimeter/depth sensor. Our research is
a significant step towards achieving the required reliability
levels of visual SLAM for subsea industry applications. Our
main contributions are:

• Extension of the state-of-the-art ORB-SLAM2 stereo
camera SLAM system using motion priors calculated
via acoustic odometry. Acoustic odometry refers to 6-



DoF pose estimates computed by fusing data from a
DVL, a gyroscope and an altimeter/depth sensor.

• Estimation of disjoint maps in scenarios where visual
tracking is temporarily lost, allowing for continuous
inspection and avoiding the need to revisit areas pre-
viously explored.

• An extensive evaluation of our approach in controlled,
uncontrolled and challenging field experiments, demon-
strating the robustness of our proposed system.

While our paper presents an ORB-SLAM2 specific fusion
method, this general formulation could be adapted to differ-
ent pose-graph SLAM frameworks.

II. RELATED WORKS

Research in underwater navigation usually relies on sensor
fusion, in particular using acoustic [5] and inertial sensors.
Johannsson et al. [1] present an approach for underwa-
ter vehicle navigation for harbour surveillance which fuses
Forward-Looking Sonar (FLS) imaging and DVL in a pose
graph formulation. Fallon et al. [6] integrate long-range
acoustic constraints with GPS data from a surface vehicle
and relative pose constraints from targets detected in side-
scan sonar images, using Incremental Smoothing and Map-
ping (iSAM). Likewise He et al. in [3] present a modified
Fast-SLAM algorithm for Autonomous Underwater Vehicle
(AUV) navigation by fusing compass and DVL with a FLS.

Despite the fact that acoustic sensors have traditionally
been the preferred choice for underwater environments, the
use of visual sensors has increased due to the advances of
visual SLAM. In particular, there are works that employ
ORB-SLAM [7] in underwater scenarios, such as Hidalgo
et al. [8] who performed an experimental evaluation of
monocular ORB-SLAM in varying weather conditions. Wei-
dner et al. [9] use ORB-SLAM2 [10] with stereo cameras
to demonstrate dense 3-D mapping of underwater caves,
producing maps that are of higher resolution than those
obtained using acoustic sensors.

More recent approaches combine visual sensors with
acoustic and inertial information using different fusion strate-
gies. Kim et al. [11] propose a method that uses a monocular
visual SLAM system as a black box motion estimator to pro-
vide pose constraints. These pose constraints are integrated
into a separate state estimation system fusing DVL, IMU
and depth observations within a factor graph formulation.
Manzanilla et al. [12] fuse an IMU and Parallel Tracking and
Mapping (PTAM) constraints within an Extended Kalman
filter (EKF). A two-stage navigation approach is presented
in [13], based on initially generating an occupancy map of
the work space using markers. This map is then used to de-
cide which odometry strategy to use, either plane extraction
or feature extraction originating from a sensor fusion system
integrating ORB-SLAM2, DVL and IMU within an EKF.

Tightly coupled Visual Inertial Odometry (VIO) ap-
proaches have also been considered in underwater scenarios
[14]. A comparison of visual-inertial and other state estima-
tion algorithms is presented in [15], finding that OKVIS [16],

ROVIO [17] and ORB-SLAM are feasible for underwater en-
vironments. Rahman et al. [18] propose an extension of the
visual-inertial odometry system OKVIS using information
from a sonar which is further extended in [2] by introducing
a robust initialisation method, real-time loop-closing and
relocalisation. This approach was validated with impressive
demonstrations in cave mapping applications using a diver.

In our paper, we investigate the use of a DVL, which
unlike a sonar, produces explicit linear velocity estimates.
We propose a method that fuses vision, DVL, gyroscope and
altimeter/depth sensing. To the best of our knowledge, this is
the first time that these sensors have been integrated within
the graph-based formulation of a visual SLAM system and
deployed in realistic underwater scenarios using a ROV for
data collection.

III. METHODOLOGY

In the following section, we describe our approach for
fusing acoustic odometry within ORB-SLAM2 [10], a sparse
stereo feature-based SLAM algorithm. During the prepara-
tion of this manuscript, ORB-SLAM3 [19], an extension of
ORB-SLAM2 which fuses IMU data to handle low visibility,
was also published. However, a comparison between our
system and ORB-SLAM3 is left as future work.

A. Notation

We represent 3D poses using transformation matrices
T ∈ SE(3) which are composed of a rotation matrix R ∈
SO(3) and a translation vector t ∈ R3. The transformation
(e)TMi−→Nj

denotes the pose of coordinate frame N at time
j relative to coordinate frame M at time i as estimated by
estimator e, following the notation introduced in [20]. We
make use of v and a to denote the vision and acoustic motion
estimators respectively. We refer to the camera and acoustic
odometry coordinate frames as C and A respectively and the
relative pose between these two frames is TA−→C .

B. Motion Priors From Acoustic Odometry

Acoustic odometry refers to the drifting 6-DoF pose es-
timate obtained by fusing information from a DVL, an
altimeter/depth sensor and a gyroscope by means of an EKF.
Next we briefly describe the estimates produced by each of
these sensors:

• A DVL transmits an acoustic signal and measures the
Doppler shift when it returns after being reflected from
the bottom. The Doppler shift can be converted to a
linear velocity estimate in the horizontal X-Y plane.

• Altimeters estimate the distance from the bottom, while
depth sensors estimate the distance from the surface;
either of these sensors can be used to estimate the
vertical Z position.

• Gyroscopes estimate 3D angular velocities. These can
integrated to obtain 3D rotations.

These sensors are fused in an EKF formulation to produce a
continuously drifting estimate of the 6-DoF pose of the robot.
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Fig. 2: Local BA factor graph. We introduce pair-wise pose
constraints using acoustic odometry. The poses within the fixed
window are not optimised but act as anchors for the pose constraints
and the poses in the local window.
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Fig. 3: If pose tracking is lost, we enable the system to initialise
a new map as soon as we reach an area that can be tracked. We
link the two maps using pose constraints from acoustic odometry.

Regarding the Falcon ROV1, we make use of the proprietary
SeeByte Copilot2 software package which provides this
EKF solution. For the BlueROV3, we implement a custom
EKF [21].

During initialisation, all degrees of freedom of this pose
are zero, with the exception of the vertical coordinate which
is initialised to the distance to the bottom/surface as provided
by the altimeter/depth sensor. The DVL provides data at a
lower frequency compared to a camera which means that
acoustic information is only available for a subset of the
camera frames.

Underwater environments often have little visual texture
and can be problematic for achieving accurate visual odom-
etry. It is beneficial to incorporate motion priors that can
constrain visual odometry optimisations during sequences
with little texture. We use the incremental pose estimates
from the acoustic odometry to formulate SE(3) relative pose
constraints which we implement within the ORB-SLAM2
graph optimisation procedures. The formulation of a pose
constraint between poses i and j is:

ri,j = logSE(3)

(
(v)TCi−→Cj

(a)T−1
Ci−→Cj

)
(1)

where log : SE(3) → se(3) is the matrix logarithm which
maps a transformation matrix to an element on the tangent
space [22] and the (a)TCi−→Cj is computed by:

(a)TCi−→Cj
= TC−→A

(
(a)T−1

A0−→Ai

(a)TA0−→Aj

)
TA−→C

(2)
The corresponding energy term is:

Ea(i, j) = rTi,jΛi,jri,j (3)

where Λi,j is the information matrix.

1https://www.saabseaeye.com/solutions/
underwater-vehicles/falcon

2https://www.seebyte.com/products/copilot/
3https://bluerobotics.com/store/rov/bluerov2/

C. ORB-SLAM2 Integration

ORB-SLAM2 uses ORB features for tracking, mapping
and place recognition. The map consists of 3D points with
associated ORB feature descriptors and each keyframe stores
its 6-DoF pose and the 2D locations of the ORB features vis-
ible within it. It maintains different types of graph structures
used for different purposes:

• The covisibility graph connects all keyframes that ob-
serve a minimum number of common points. This graph
is used to determine the local window, which is a small-
scale graph structure containing (1) the latest keyframe,
(2) those keyframes connected to it and (3) the points
observed by these keyframes. The local window is used
for real-time camera pose tracking and local mapping.

• The essential graph consists of a minimum spanning
tree connecting all keyframes, as well as additional
connections between keyframes that observe a large
number of common points. This graph is augmented
with loop closure connections and is used for global
mapping and optimisation.

The system implements three threads for camera pose track-
ing, local mapping and global mapping, which all leverage
bundle adjustment (BA):

• The tracking estimates the pose of the camera relative
to the reference keyframe.

• Local mapping runs when a new keyframe is added to
the map and it implements BA using a local window of
keyframes retrieved from the covisibility graph.

• Global mapping runs when a new loop closure is
detected and it involves a global pose graph optimisation
of the essential graph followed by global BA to increase
accuracy.

Next, we describe the modifications we made to ORB-
SLAM2 to integrate acoustic odometry estimates.

1) Data Structures: ORB-SLAM2 maintains internal data
structures to represent the 3D map points and keyframes.
When available, we annotate the keyframe data structures
with corresponding pose estimates from acoustic odometry
and timestamps of these estimates. As previously mentioned,
the DVL provides data at relatively low frequency compared
to the camera, so this information is only added for a subset
of the keyframes.

Next, we describe when the additional pose constraints are
included within the estimation process.

2) Threads: ORB-SLAM2 is composed of three parallel
threads that perform Tracking, Local Mapping and Loop
Closing. We summarise how the algorithm was modified
within these threads to integrate the pose obtained from the
acoustic odometry step.

a) Tracking: This thread tracks the pose of the camera
at frame-rate. It performs feature matching between the
current frame and the reference keyframe. A motion-only
BA procedure then optimises the camera pose using these
correspondences.

If both the current frame and the reference keyframe
have an associated acoustic odometry pose, we formulate
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Fig. 4: The proposed algorithm reconstructs the walls of the tank in OSL-LOOP , while ORB-SLAM2 loses track after facing a feature-
less area. A illustrates the OSL-tank, in which a structure was submerged. B is the result obtained with ORB-SLAM2, which loses
track when facing one of the walls in the tank. C presents the obtained sparse reconstruction using the proposed approach. The area in
which the structure was placed was highlighted in gray. D Illustrates snapshots of the trajectory and map estimated using our proposed
approach, while E shows samples of images from this sequence. The image with the orange rectangle is the one in which ORB-SLAM
loses track.

an additional pose constraint and include this in the motion-
only BA. The pose of the reference keyframe is kept fixed
and only the pose of the current camera frame is optimised.

b) Local Mapping: This component performs local BA
after a new keyframe is inserted in the map. It optimises the
poses of the last keyframe and all keyframes connected to
it in the covisibility graph, as well as all points observed
by these keyframes. Other keyframes which observe these
points but are not connected to the latest keyframe form the
fixed window – they contribute to the cost function but their
poses are fixed.

We modify this procedure to add pair-wise pose constraints
using acoustic odometry information. The pairs chosen are
those keyframes whose associated acoustic odometry poses
are the closest in time. For all pairs, only the poses of the
keyframes from the local window are optimised, while the
poses from the fixed window stay fixed. The structure of this
optimisation problem is shown in Fig. 2.

c) Loop Closing: When a loop is detected, global
optimisation is performed to eliminate the drift accumulated
in the trajectory. Similarly as within the local mapping
procedure, we include pair-wise pose constraints between
keyframes whose associated acoustic odometry poses are
close in time. These additional constraints are included both
in the pose graph optimisation as well as within global BA.

3) Joining Sub-Maps: The current ORB-SLAM2 imple-
mentation supports a single map. When tracking is lost, the
system enters relocalisation mode until the robot returns to a
previously visited scene and tracking can be resumed. This
can be limiting in practice because a robot may perform a
continuous scanning motion without returning to a previously
visited scene.

To enable this use case, we perform a reinitialisation-

type procedure whenever the camera encounters a new area
that is sufficiently textured and can be used for tracking
(assuming that tracking was lost beforehand). We use an
acoustic odometry pose to connect the first keyframe from
the new map with the keyframe from the previous map
that had the temporally closest acoustic odometry pose. The
structure of this map graph is shown in Fig 3.

With this strategy we no longer use the relocalisation
procedure anymore, but instead rely on the loop closure
detection system to observe if we return to a previously
visited scene. While this is not a general multi-map support
system (such as the one proposed in ORB-SLAM3 [19]), we
find this feature useful in practice as it enables the robot to
complete scanning missions where some portions cannot be
tracked visually, as is demonstrated in Section IV-D.

IV. EVALUATION

This section describes the quantitative and qualitative
evaluation of our system.

A. Hardware

We use two ROVs to test our system – a BlueROV for
testing in controlled environments and the Falcon ROV for
tests in uncontrolled and field conditions. Both the Falcon
ROV and BlueROV are equipped with custom underwater
stereo cameras designed following [23] to work at close
range (1-2m) in case of BlueROV and medium range (2-
3m) in case of the Falcon ROV. Regarding the DVL,
BlueROV is equipped with the Teledyne Explorer and Falcon
ROV contains the Workhorse Navigator. Both robots contain
MEMS gyroscopes. Finally, Falcon ROV is equipped with
an altimeter while BlueROV carries a depth sensor. Table
I states the update rates of these sensors. As previously



mentioned, for the Falcon ROV we make use of a proprietary
EKF solution which does not provide an interface to the
internal gyroscope and altimeter.

Both the EKF and ORB-SLAM2 systems work in real-
time and our modifications contribute negligible extra com-
putational load on the system which still works in real-time.

Robot Sensors Update Rates

Falcon ROV
camera 12 Hz
DVL 2 Hz
EKF 2 Hz

BlueROV

camera 30 Hz
DVL 7 Hz

gyroscope 30 Hz
depth sensor 30 Hz

EKF 7 Hz

TABLE I: The update rates of the sensors used by Falcon ROV
and BlueROV.

B. Datasets

We recorded two different sets of sequences, using the
ROVs described in Section IV-A, in order to evaluate our
proposed algorithm both quantitatively and qualitatively.

1) BlueROV Sequences: These sequences are designed to
test the algorithm and evaluate its quantitative performance
in controlled conditions that aim to mimic the challenges
found in field data. They were recorded in FloWave TT4, an
ocean energy research facility equipped with an underwater
motion capture system that provides ground truth of the robot
location. We created a structure to be used for inspection. A
top-view of this setup is depicted in Fig. 1 (top-left). We
collected the following sequences:

• EASY-LOOP: Slow circular movement around the
structure using manual control and with the robot’s
lights turned on.

• HARD-LOOP: Fast movement around the structure
using manual control and with the robot’s lights off.

• LIGHTS: Slow movement around the structure with
the robot’s lights turned off initially and then turned on
halfway through the inspection.

2) Falcon Sequences: These sequences are a mix of
two test sequences in a fresh water tank in uncontrolled
conditions and one field sequence:

• OSL-LOOP: Test sequence recorded in the Ocean Sys-
tems Lab (OSL) at Heriot-Watt University, by placing
the ROV inside a small fresh water tank (4m x 3m x
2m), containing a submerged structure. The sequence
consist of a 360 degree loop, where the robot views the
outer walls of the tanks first and then navigates around
the structure at the end.

• TUBE: Test sequence recorded in the wave tank at
Heriot-Watt University of the robot inspecting a sub-
merged tube. This sequence is challenging as the robot
occasionally loses view of the structure.

• BLYTH: Field data recorded in the Offshore Renewable
Energy Catapult facilities in Blyth, United Kingdom,

4https://www.flowavett.co.uk/

where the robot is executing a slow sideways motion
to inspect a submerged asset. This sequence includes
extremely hard visibility conditions with poor lighting
and floating particles in the water.

Fig. 5: Challenging sample images from the HARD-LOOP
(left) and LIGHTS (right) sequences. Motion blur and overexposed
images cause the camera pose tracking of ORB-SLAM2 to fail.

Sequence Distance Time ORB-SLAM2 Proposed
(m) (s) Error (m) Error (m)

EASY-LOOP 9.52 116.4 0.14 0.14
HARD-LOOP 11.49 113.26 FAIL 0.33

LIGHTS 10.13 69.68 FAIL 0.34

TABLE II: Our proposed algorithm improves over the ORB-
SLAM2 baseline. The reported error corresponds to the Absolute
Trajectory RMSE. Each sequence was evaluated three times and
the best achieved result is reported.

C. Quantitative Results

We evaluate the performance of our system using data
collected with the BlueROV which contains ground truth
trajectory estimates from a motion capture system. We
evaluate the trajectories estimated by our system against this
ground truth data and report the Absolute Trajectory RMSE
using [24].

The results are presented in Table II, which illustrates the
performance of ORB-SLAM2 and the proposed approach in
3 sequences. EASY-LOOP has good visual conditions and
both algorithms run successfully in this sequence. In the case
of HARD-LOOP, ORB-SLAM2 fails due to strong image
blur caused by the fast motion of the robot (Fig. 5 left). In
the LIGHTS sequence, ORB-SLAM2 fails to track due to the
sudden change in illumination (Fig. 5 right). In contrast, the
robust visual odometry of our system enables it to complete
these missions.

D. Qualitative Results

The qualitative evaluation was performed using the se-
quences recorded with Falcon ROV. Due to the absence
of ground truth information we focus the discussion on the
consistency of the generated maps.

The results for OSL-LOOP are presented in Fig. 4, in
which a comparison with ORB-SLAM2 results is also in-
cluded. As soon as ORB-SLAM2 faces a featureless region,
such as the tank’s walls, the algorithm loses track and
never recovers. On the other hand, our approach completes
the loops and reconstructs the tank according to its known
dimensions, as well as the submerged structure. A similar
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Fig. 6: In challenging visibility conditions, as the ones observed in BLYTH, the proposed approach outperforms ORB-SLAM2. A
illustrates the submerged structure that was used for inspection. B is the result obtained with ORB-SLAM2, which loses track seconds
after starting the inspection. C presents the obtained sparse reconstruction using the proposed approach. D shows snapshots of the
trajectory estimated using our proposed approach (orange) and the one generated by acoustic odometry (red). E shows that the drift in
acoustic odometry leads to an estimate which collides with the reconstruction (blue), while our method corrects for this drift using vision.
F shows samples of images from this sequence. The image with the orange rectangle is the one in which ORB-SLAM2 loses track.
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Fig. 7: In cases in which the robot loses view of the structure,
the proposed approach outperforms ORB-SLAM2. A illustrates
the submerged structure that was used for inspection. B is the
result obtained with ORB-SLAM2, where the system loses track
shortly after mapping began. C presents the obtained sparse
reconstruction using the proposed approach, as well as the estimated
trajectory. D shows the sequence of images. The image with the
orange rectangle is the one in which ORB-SLAM2 loses track.

situation occurs during the TUBE sequence (Fig. 7), where
ORB-SLAM2 fails as soon as the robot loses view of
the structure. Our system generates a new map when the
structure is in view again and is able to finalise the mission.
Finally, in the BLYTH field sequence (Fig. 6) the visibility
conditions are very poor and ORB-SLAM2 fails immedi-
ately after starting the experiment. Our system manages to
reconstruct macro features such as the door and other frame
elements of the structure. Our system also reduces the drift
compared to acoustic odometry by using visual data.

Thanks to the proposed visual odometry and sub-map
generation components (as described in Section III-C.3)
of our approach, the robot can perform robustly in these
challenging conditions, allowing it to successfully complete
the missions.

V. DISCUSSION

We presented a visual-acoustic SLAM system that fuses
data from a DVL, a gyroscope and an altimeter/depth sensor
which was successfully deployed in two different ROVs and
in controlled, uncontrolled and field experiments. We showed
that our approach outperforms a state-of-the-art visual SLAM
baseline, ORB-SLAM2, both quantitatively and qualitatively.
Our novel approach prevails where ORB-SLAM2 tends to
fail: under adverse but common underwater scenarios, such
as low lighting, fast motions and feature-less environments.
We showed that advantages are realised for tracking and
localisation robustness and also reconstruction, enabled by
our sub-map generation procedure. The result is a robust
system that can perform continuous mapping of a given area.

As we focus on an inspection application, we always
assume the DVL has bottom lock and have not evaluated
our approach in sea mode. We also did not evaluate our
system in the case of severe DVL outliers. Our system
implements a large covariance for acoustic odometry and
the main benefit from this integration is in the multi-map
support. Qualitatively, we observe that integrating acoustic
odometry in scenarios where visual odometry already works
well does not lead to further improvement.

Future work includes the integration of dense mapping into
our approach, in order to produce dense reconstructions that
can be more useful for visual inspection and which could
also be used for collision-free path planning.
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