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Abstract

Visual simultaneous localisation and mapping (SLAM) is an important technique for

enabling mobile robots to navigate autonomously within their environments. Using

cameras, robots reconstruct a representation of their environment and simultaneously

localise themselves within it. A dense visual SLAM system produces a high-resolution

and detailed reconstruction of the environment which can be used for obstacle avoid-

ance or semantic reasoning.

State-of-the-art dense visual SLAM systems demonstrate robust performance and

impressive accuracy in ideal conditions. However, these techniques are based on re-

quirements which limit the extent to which they can be deployed in real applications.

Fundamentally, they require constant scene illumination, smooth camera motion and

no moving objects being present in the scene. Overcoming these requirements is not

trivial and significant effort is needed to make dense visual SLAM approaches more

robust to real-world conditions.

The objective of this thesis is to develop dense visual SLAM systems which are

more robust to real-world visually challenging conditions. For this, we leverage sensor

fusion and motion segmentation for situations where camera data is unsuitable.

The first contribution is a visual SLAM system for the NASA Valkyrie humanoid

robot which is robust to the robot’s operation. It is based on a sensor fusion approach

which combines visual SLAM and leg odometry to demonstrate increased robustness

to illumination changes and fast camera motion.

Second, we research methods for robust visual odometry in the presence of moving

objects. We propose a formulation for joint visual odometry and motion segmentation

that demonstrates increased robustness in scenes with moving objects compared to

state-of-the-art approaches.

We then extend this method using inertial information from a gyroscope to com-

pare the contributions of motion segmentation and motion prior integration for ro-
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bustness to scene dynamics. As part of this study we provide a dataset recorded in

scenes with different numbers of moving objects.

In conclusion, we find that both motion segmentation and motion prior integration

are necessary for achieving significantly better results in real-world conditions. While

motion priors increase robustness, motion segmentation increases the accuracy of the

reconstruction results through filtering of moving objects.
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Chapter 1

Introduction

Simultaneous localisation and mapping (SLAM) is a well-studied problem within the

fields of Robotics and Computer Vision. It is a fundamental capability for achieving

autonomy in mobile robots:

A robot should use its on-board sensors to build an internal model of its environment and

simultaneously use this model to track its own location in real-time.

Within this thesis we focus on visual SLAM, meaning we address the problem of

SLAM using cameras, as these are widely available and low-cost sensors. In particular,

we research techniques for stereo and RGB-D cameras.

Despite the long history of visual SLAM, few techniques are robust enough to

function reliably in real-world conditions, which results in limited commercial appli-

cations of SLAM in robots or other embedded devices.

The work in this thesis focuses on achieving robust visual SLAM operation in visu-

ally challenging situations. For this, we leverage sensor fusion and motion segmenta-

tion for situations where camera data is unsuitable.

We begin this chapter by highlighting notable applications of visual SLAM both

in academic and industrial projects, which illustrates the broad applicability of this

field. Then, we discuss the basic building blocks of visual SLAM and their evolution

in time, from sparse to dense approaches. This is followed by a discussion of the

fundamental limitations of visual SLAM and the methods researchers have attempted

to tackle them. Finally, we state the contributions of our research and outline the in-

depth chapters of this thesis.
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1.1 Examples of Visual SLAM Implementations

Visual SLAM is a versatile and low-cost technology that has been successfully imple-

mented within research projects across different domains. In this section we provide

some examples of the situations where visual SLAM has been used.

1.1.1 Research Projects

In Table 1.1.1 we give examples of applications which used visual SLAM within re-

search projects. We describe approaches that span a multitude of robotics domains,

including space, marine, aerial, autonomous driving, humanoid robots and medicine.

Domain Applications

Space Maimone et al. [1] demonstrated the first implementation of vision-based

motion estimation applied to exploration on Mars with rovers, with the

purpose of detecting and handling wheel slippage during driving. In

related work, Olson et al. [2] propose a technique for Mars terrain recon-

struction using cameras mounted on rovers.

Marine Visual SLAM is also used for autonomous underwater robotics applica-

tions, such as reconstructing 3D models of the sea floor [3] or structures

such as wrecks [4] or caves [5]. Due to poor visibility conditions un-

derwater, researchers in this domain often fuse vision with additional

sensors such as sonars [6].

Aerial There are numerous applications of visual SLAM in autonomous drones.

As cameras are lightweight sensors and visual SLAM can be sufficiently

light in computation, drones rely on such systems to localise themselves

within their environment [7]. Examples include collaborative SLAM

techniques which enable multiple drones to share a common world rep-

resentation [8] [9] and methods for dense surface reconstructions used

for inspection and manipulation [10] [11]. Recent innovations in this do-

main include the use of event cameras for handling the high velocities of

drones which tend to induce significant motion blur in regular cameras

[12].
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Automotive Many visual SLAM approaches are implemented on land-based

robots. The 2005 DARPA Grand Challenge1 was an autonomous driv-

ing competition that sparked significant subsequent investment in the

development of driver-less cars. Within this competition, cars had to

autonomously navigate 244km over desert terrain within the Mojave

Desert. Cars tracked their locations on the path using GPS (global

positioning system) and used sensors such as cameras, radars and LI-

DARs (Light Detection and Ranging) to compute maps of their sur-

rounding terrains in order to identify obstacles [13] [14] [15].

Humanoids In 2012, the nuclear disaster at the Fukushima Daiichi Power Plant in

Japan resulted in an environment that was too dangerous for human

responders. DARPA issued a new Robotics Challenge2 to develop

ground robots that could operate in hazardous human-engineered en-

vironments and perform complex tasks semi-autonomously. Tasks in-

cluded driving a vehicle, walking over uneven terrain, opening doors,

climbing a ladder and manipulating objects or tools typically used by

humans. Many teams developed humanoid robot designs where state

estimation is implemented through sensor fusion of leg kinematics

and IMUs (inertial measurement units) and 3D terrain mapping us-

ing LIDARs and cameras [16] [17] [?].

Medicine Visual SLAM can also find uses in medicine, particularly in en-

doscopy, which is the process of examining a particular organ or cav-

ity using an endoscope that has a light source and a camera attached.

In this case, visual SLAM is used to estimate the pose of the endo-

scope and build a 3D reconstruction of the organ or cavity which is

being inspected [18] [19] [20].

1.1.2 Commercial Projects

Implementations of Visual SLAM have started to appear in consumer-oriented com-

mercial products as well. We mention here (Table 1.1.2) prominent examples from the

Robotics and Virtual/Augmented Reality (AR/VR) domains.

1https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
2https://www.darpa.mil/program/darpa-robotics-challenge
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Domain Applications

Robotics Robotics applications of visual SLAM includes the iRobot Roomba3 vac-

uum cleaner, which can build a 2D reconstruction of an apartment and

track its location within it. This way, it can be programmed to only vac-

uum particular rooms or areas of the house.

AR/VR Virtual or augmented reality headsets such as the Oculus Quest4 or the

Microsoft Hololens5 implement so-called ”inside-out tracking” - they

track the motion of the headset in order to correctly render views of the

virtual scene from the point of view expected by the user. These devices

implement room-scale 3D visual SLAM solutions. High level accuracy

is achieved by installing several cameras within the headset to maximise

the field of view.

1.2 A Review of Visual SLAM

The problem of using images to build a model of the environment and estimate the

motion of the camera has been tackled through two main fields of research:

1. The term Visual SLAM, originating from the Robotics community, implies that

the input is a video stream and the computation is expected to run in real-time

on the robot hardware [21].

2. Within the Computer Vision community, researchers have tackled the problem

of Structure from Motion (SfM), where the input is typically a set of unordered

images (potentially taken with different cameras) and without the requirement

for real-time operation [22].

A visual SLAM system is a tightly coupled combination of a number of compo-

nents:

• Visual odometry estimates the incremental motion of the camera from the most

recent stream of consecutive images. The minimal case is a pair of images. It is

related to the concept of localisation in the sense that it tracks the motion of the

camera with respect to a local reference frame. However, as it is an incremental

process, it suffers from unbounded drift over time.
3https://www.irobot.co.uk/roomba
4https://www.oculus.com
5https://www.microsoft.com/en-us/hololens
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• Mapping is the process of estimating a model of the environment. This also in-

cludes design decisions regarding how to represent this model in memory.

• Loop closure recognises an already visited scene. It is an important component as

it is the main approach to correct drift from visual odometry.

• Global localisation implements solutions to handle the ”kidnapped robot” prob-

lem, where the robot is placed in an unknown location within a previously re-

constructed environment. The task is to identify the current location of the robot

within the environment to resume tracking it.

To achieve real-time operation, a common strategy among many visual SLAM sys-

tems is to sub-divide the estimation process into two main components [23, 24, 25]:

1. Local estimation: for estimating the local camera pose and map in real time, a

process which drifts over time.

2. Global estimation: which keeps in memory a larger history of the visited scenes

as well as the past poses of the camera. Once a loop closure is detected, this

process re-estimates the whole map and the trajectory of the camera, correcting

drift. This process is typically slower than real-time.

These processes would run on separate threads, with the local estimation expected

to run at frame-rate while the global estimation is typically slower than frame-rate but

expected to produce a globally consistent camera trajectory and reconstruction.

Next, we discuss how the original sparse Visual SLAM systems were designed. As

this thesis is concerned with dense systems, we will then review how modern dense

Visual SLAM systems differ in their design compared to the sparse counterparts.

1.2.1 Sparse Visual SLAM

Sparse visual SLAM is one of the original formulations of visual SLAM. The term

sparse means that these approaches reconstruct maps with a small set of 3D landmarks

which are represented as points [27] [24]. An example of a sparse reconstruction can

be seen in Figure 1.1 (centre). While these maps are useful for localisation, they do not

store information about occupied space. Nevertheless, they are efficient representa-

tions which require little memory. Many such SLAM systems work in real-time on a

single CPU.
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Figure 1.1: Left: RGB (top) and Depth (bottom) sample input images of a desk from the
TUM/Freiburg dataset [26]. Centre: Sparse reconstruction of the desk obtained with ORB-
SLAM [24]. Right: Dense surfel-based reconstruction of the desk obtained with proposed
system StaticFusion described in Chapter 4.

1.2.1.1 Sparse Visual Odometry

In sparse visual odometry, camera motion is estimated from a few pairs of correspond-

ing features or pixels in the input images.

Feature-based techniques take as input raw images and extract features such as SIFT

[28] or the more efficient options, ORB [29] or FAST [30] from these images. A global

search procedure then matches features from one image with corresponding features

from the other. The camera pose is then computed by minimising the error of repro-

jecting features from one image onto the other [31, 23, 32].

Direct approaches instead make use of the raw pixel values without requiring the

computation of features. Here, the camera motion is estimated by repeatedly warp-

ing one of the input images towards the other until the per-pixel intensity difference

between the two images is minimised [33, 34].

1.2.1.2 Local Estimation

Filtering In Robotics, SLAM was originally formulated as a filtering problem and

several methods proposed Extended Kalman Filter (EKF) - based solutions, where the

current pose of the robot and all landmark locations are estimated in a joint probabil-

ity represented by a state vector and covariance [35] [36]. As a new image is received,

the former camera pose is marginalised out while the landmark poses are retained.

MonoSLAM [21] was the first visual SLAM system to apply this strategy, demonstrat-

ing real-time incremental tracking and mapping of a room-scale environment with a

single hand-held camera.
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Optimisation Techniques inspired by SfM propose solutions based on solving non-

linear cost functions, such as the landmark reprojection error. Here, the task is to

solve for the camera poses and landmark 3D locations which most accurately predict

the reprojected 2D pixel coordinates of the landmarks within all input images. This

formulation is also known as bundle adjustment. To run in real-time, SfM-based tech-

niques typically implement sliding-window bundle adjustment by using only a recent

history of previously seen frames, called keyframes [23] [37].

Research by Strasdat et al. [38] indicates that for real-time operation, better accu-

racy is obtained by solving for many landmarks rather than many poses. Optimisa-

tion techniques handle this by dropping redundant frames, while filtering approaches

must maintain large non-sparse covariance matrices encoding correlations between

landmark positions. Overall, they conclude that optimisation techniques outperform

filtering in terms of accuracy for the same computational cost.

1.2.1.3 Global Estimation and Loop Closure Implementations

Within visual SLAM applications, one common way of recognising loop closures is

by implementing place recognition approaches [39] [40]. Features are computed for

each individual frame and a ”bag-of-words” database is built to contain images and

associated feature descriptors. Place recognition is performed by computing the fea-

ture descriptors for the current frame and querying the database in order to determine

whether an existing frame with similar features has been seen before.

Once a place has been recognised, global bundle adjustment is performed incorpo-

rating the new loop closure constraint. This results in a globally consistent map and

camera trajectory [24].

1.2.2 Dense Visual SLAM

In recent years, advances have been made in the field of dense visual SLAM, sup-

ported by the arrival of low-cost RGB-D cameras such as the Microsoft Kinect or the

Asus Xtion Pro Live. Such sensors provide as input registered colour and depth im-

ages, typically at a rate of 30Hz. The field of view is typically rather low, around

50 degrees, with usual resolutions of 640x480. For a more detailed discussion of the

capabilities of these sensors, please consult Section 2.2.1.

These sensors proved very useful for the development of dense visual SLAM, as
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they could be used for building dense 3D models. An example of a dense reconstruc-

tion can be seen in Figure 1.1 (right). As opposed to maps consisting of keyframes

and sparse landmarks, dense 3D models are useful not only for localisation but also

for obstacle avoidance and semantic reasoning about the environment. For example,

McCormac et al. [41] build a dense 3D reconstruction where every element in the map

is also attributed a semantic label of a particular object. Other approaches propose

building object-centred reconstructions by representing the environment as a graph

with nodes consisting of objects which are densely reconstructed [42] [43], and edges

constraining their poses relative to each other. Using such reconstructions, a robot can

reason about the different objects within its environment and manipulate them.

Next, we will summarise some of the important techniques for representing these

dense 3D models. Then we will discuss notable design decisions which differentiate

dense visual SLAM techniques from the classical sparse keyframe-based approaches

mentioned so far.

1.2.2.1 Representations for Dense 3D Models

This section summarises some of the most prominent methods for representing dense

3D models, including a discussion of their benefits and weaknesses.

Voxel-based Representations discretise the space into cells which contain informa-

tion about occupancy. Their advantage is that they encode local connectivity, however

the discretisation procedure implies that sub-voxel information is lost. Examples of

such representations include:

• Occupancy Grid maps are one of the earliest methods for representing environ-

ments as occupied or clear space [44, 45]. This method consists of discretising

the space into individual cells of fixed sizes, where each cell indicates the prob-

ability that it is either fully clear or fully occupied. It has significant drawbacks,

particularly it requires a large amount of memory for storing empty space.

• Octree representations are more efficient as they recursively subdivide the space

into octants according to the resolution necessary to represent the scene [46, 47,

48]. Voxels containing fine structure can be subdivided to the required resolution

while neighbouring voxels containing empty space can be merged into a large

block.
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• Signed Distance Function (SDF) representations use each cell to store the signed

distance to the closest surface [49]. An important benefit is that the location of

the surface can be extracted by performing interpolation between the closest

outer and inner voxels, resulting in sub-voxel accuracy for the 3D reconstruc-

tion. Thus, it makes it possible to represent fine structures without being limited

to the resolution of the voxels. It is the current state-of-the-art representation for

high quality 3D reconstructions [50] [51].

Surfels are point-based representations. They represent small discs with a specific

position, normal, colour and radius [52]. They are an efficient representation both in

terms of memory and rendering speed and which can be interpreted directly [53] [54].

The disadvantage is that they do not encode local connectivity information and result

in generally noisier reconstructions compared to those obtained using signed distance

functions. However, they allow for an easier representation of non-rigidly deforming

objects, as each surfel can be independently transformed with its own motion [55].

1.2.2.2 Large Scale Dense 3D Mapping

Many dense RGB-D SLAM systems have been developed in the last 10 years, with

a seminal technique being KinectFusion [56]. It was the first method to implement

real-time dense tracking and fusion of depth data using the SDF representation. The

approach used a volumetric representation of fixed size integrated on a GPU, which

made its application limited to small-scale scenes.

Future research focused on techniques for extending dense SLAM to large scale

environments. Whelan et al. proposed Kintinuous [57], a moving volume technique

where only the current local map is stored in a regular grid SDF representation on

the GPU. Voxels corresponding to previously visited scenes are streamed to the CPU

to free up memory for newly visited areas. Nießner et al. proposed instead a more

efficient technique for handling SDF reconstructions based on hierarchical hashing

for allocating and accessing voxels [58]. It is the current state-of-the-art technique for

methods using SDF representations [59].

Another approach is the system proposed by Keller et al. [53] who use surfels to

represent the 3D scene as these are less memory intensive than the regular grids cor-

responding to SDF-based implementations.
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1.2.2.3 Dense Visual Odometry

Frame-to-Model Alignment Another notable design decision common in many sys-

tems is to replace keyframe-based visual odometry with frame-to-model alignment

[56] [54]. This means that incoming frames are aligned against virtual views rendered

from the existing reconstruction instead of against previously seen frames. The moti-

vation for this is that storing keyframes as well as a 3D model would be redundant.

This works well for depth registration because 3D fusion typically results in smoother

and less noisy rendered depth images. However, current methods for real-time fusion

of colour typically implement per-pixel independent averaging, which can produce

artifacts. This can be seen in Figure 1.1 (right) where the floor and the desk are recon-

structed with incorrect non-uniform colour. In more severe cases these artifacts could

be problematic for photometric registration and an important direction would be to

research more accurate methods for real-time photometric fusion.

Visual Odometry from Intensity Images Techniques which are equivalent to direct

visual odometry are also investigated for intensity images provided by RGB-D cam-

eras. These techniques include direct and dense methods, where the current image

is repeatedly warped towards a reference until the per-pixel error over all pixels is

minimised [60, 61].

Visual Odometry from Range Images As RGB-D cameras provide both colour and

depth data, methods for motion estimation from range data are also implemented.

Many approaches propose variations of the iterative closest point (ICP) algorithm [62].

In order to make ICP run in real-time, corresponding points between two point clouds

can be quickly established using projective data association. Given these correspon-

dences, the transformation between two point clouds is computed by minimising a

cost function such as the point-to-point error. However, it was found that indoor

scenes which contain many planar structures benefit from implementing a point-to-

plane error, which also requires the computation of per-point normals [63].

A different approach for aligning depth images was proposed by Jaimez et al. [64],

a formulation that adapts direct image alignment to depth images: instead of using

point clouds, this technique aligns the depth images.

Computing visual odometry from depth images provides increased robustness in
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the case of changing illumination. However, these techniques can suffer if there is

not sufficient structure in the environment to constrain the motion in all degrees of

freedom. For this reason, depth registration is typically complemented by techniques

which align colour images as well [54] [57].

1.2.2.4 Global Estimation and Loop Closure Implementations

Using dense 3D models instead of keyframe-based implementations poses a challenge

with respect to how loop closures can be implemented in order to correct drift accu-

mulated within the 3D model.

ElasticFusion [54] make the interesting decision of implementing loop closures as

non-rigid deformations on the 3D model [65]. Their choice of representing the envi-

ronment using surfels rather than an SDF aids this decision, as it is easier to deform

points by transforming each one individually rather than a volumetric model. Nev-

ertheless, recent efforts with BundleFusion [50] do implement loop closure ”defor-

mations” on volumetric SDF representations through repeated surface reintegration

operations. They de-integrate RGB-D images from old poses and re-integrate them

at the new poses. They demonstrate high quality reconstructions of apartment-sized

spaces but do require two GPUs to run in real-time.

1.3 The Problem of Robustness in Visual Odometry

The geometric aspects of visual SLAM are well understood and many solutions are

now available that work reliably in ideal conditions. The current focus in state-of-the-

art techniques is to enable these systems to operate robustly in real-world conditions

[66].

1.3.1 Challenges for Visual Odometry

In this thesis, we focus in particular on the following challenges related to visual

odometry:

1. Lack of texture in the images can lead to degenerate motion estimates.

2. Significant noise such as motion blur, illumination change or rolling-shutter ef-

fect can induce errors.
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3. Many visual SLAM systems assume they operate within a static environment

and moving objects can cause errors within visual odometry.

Next, we discuss two common strategies for achieving robustness, namely through

sensor fusion or robust computer vision.

1.3.2 Sensor Fusion

Sensor fusion is a branch of research which concerns how to best use information from

multiple sensors to obtain the highest accuracy state and reconstruction estimates. It is

often inspired by human biology. For example, human perception makes use of senses

such as touch and sound to complement vision. Further review regarding fusion of

vision with legged odometry and inertial sensors is provided in Chapters 3 and 5.

Typical state-of-the-art approaches often formulate this problem as bundle adjust-

ment optimisation problems, where visual constraints are complemented with pose

and measurements constraints from the different sensors.

Successful approaches have been proposed, including visual-inertial systems [67]

[68] [69], sonar-vision systems for underwater navigation [4] [70], fusion of wheel or

leg odometry with vision for land robots [71] [72].

While there can be significant benefits in terms or robustness and accuracy with

implementing sensor fusion systems, there are also complications:

1.3.2.1 Calibration

The sensors must be extrinsically calibrated, such that measurements from one sensor

can be transformed into the coordinate system of another. One possibility to achieve

this is to physically measure the distance between the sensors. Common approaches

rely on recording calibration sequences, where both sensors execute the same motion

and estimate their own trajectories [73]. The calibration method then aligns these

trajectories to recover the transformation between the sensors.

1.3.2.2 Synchronisation

The sensors must be synchronised so that there is temporal correspondence between

measurements of different sensors. In practice, the best synchronisation can be achieved

through hardware synchronisation where all sensors involved have messages time
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stamped with respect to the same clock. This can be found typically in stereo cam-

era set-ups or in visual-inertial sensors [74]. However, systems which fuse sonars or

leg/wheel odometry cannot implement this, and instead resort to techniques such as

time-of-arrival, where messages are stamped the moment they are received by the

computer running their driver.

1.3.3 Robust Computer Vision

In this section we discuss approaches for robust computer vision that are specifically

targeted towards visual odometry. Techniques for increased robustness to dynamic

environments are reviewed in more detail in Chapters 4 and 5.

1.3.3.1 Dense and Direct Visual Odometry

In dense and direct image alignment applications, a common strategy is to first build

a pyramid of images and align these instead of the original images, starting from the

lowest resolution towards the highest [33] [60]. This is necessary because dense and

direct image alignment algorithms rely on image gradients which are only valid lo-

cally.

Another important strategy is the use of an M-estimator to downweight the in-

fluence of high residuals that could originate from outlier pixel correspondences [75]

[64].

Recent approaches are also investigating using learned features instead of raw

pixel values. Czarnowski et al. [76] replace pyramid-based dense image alignment

with aligning the pyramid of features from a convolutional neural network and demon-

strate increased robustness to strong illumination changes.

1.3.3.2 Direct vs Feature-based Formulations

Regarding the robustness of feauture-based vs direct SLAM, Yang et al. [77] performed

a study which compares the current state of the art monocular SLAM systems, ORB-

SLAM [24] and DSO [27]. Both systems implement sliding-window bundle adjust-

ment, however ORB-SLAM implements feature-based alignment while DSO is a di-

rect method. While they display state-of-the-art accuracy, their robustness was found

to differ:
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• DSO is more robust to motion blur than ORB-SLAM, as this can affect the ap-

pearance of features significantly.

• ORB-SLAM is more robust to rolling-shutter effects than DSO. In this case, fea-

tures are affected to a lesser extent compared with the raw image.

• DSO works more reliably in scenes with little texture, as it can make use of any

pixel with gradient. On the other hand, ORB features would not be detected

unless there is significant gradient in the neighbourhood of a pixel.

In light of these differences, one possible research direction is to develop a system

which combines both techniques, to achieve robustness in all scenarios.

1.3.3.3 Handling Motion Degeneracies

Research also concerns strategies for handling situations where the current image does

not contain enough features to constrain the motion estimate. Zhang et al. [78] analyse

optimisation-based problems by inspecting the structure of the constraints and elimi-

nating the unconstrained degrees of freedom from the estimation procedure, i.e. they

only produce motion estimates for the observable states. Jaimez et al. [79] propose a

filtering technique where motion from the unconstrained degrees of freedom is ap-

proximated by previous velocity estimates.

1.4 Contributions and Outline

In this thesis, we focus on addressing the challenges discussed in Section 1.3.1 by

proposing dense visual SLAM and odometry methods which are robust to (1) lack of

features in the image, (2) noise such as illumination change or motion blur, (3) the

presence of moving objects in the scene. This is achieved through two main strategies,

namely sensor fusion and motion segmentation.

The main contributions of the thesis are as follows:
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Chapter 3 addresses these challenges and proposes a visual SLAM system de-

signed to operate on a humanoid robot. Robotic applications of visual

SLAM are challenging due to the dynamic motion of the robot, the

lack of features in man-made environments and the presence of dy-

namics in the scene. To achieve robustness in these situations, we pro-

pose a sensor fusion system that combines semi-dense visual odometry

from a stereo camera mounted on the robot with a motion prior from

a kinematic-inertial state estimator. We evaluate this system using the

NASA Valkyrie humanoid robot in a laboratory environment equipped

with a Vicon motion capture system. Our experiments demonstrate

pose tracking robustness to sudden view change, motion blur in the

image, change in illumination and tracking through several sequences

of featureless areas in the environment. Finally, we provide a qualita-

tive evaluation of our stereo 3D reconstruction against a LIDAR map.

This contribution is based on the following publication:

Direct Visual SLAM fusing Proprioception for a Humanoid Robot.

Raluca Scona, Simona Nobili, Yvan R. Petillot, Maurice Fallon. In Pro-

ceedings of IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2017.

Chapter 4 is the second contribution of this thesis and proposes a technique to

increase the robustness of dense visual SLAM in dynamic scenes. The

method performs simultaneous visual odometry and motion segmen-

tation, resulting in increased robustness compared to state-of-the-art

techniques designed for indoor scenes. This contribution is based on

the following publication:

StaticFusion: Background Reconstruction for Dense RGB-D SLAM

in Dynamic Environments. Raluca Scona, Mariano Jaimez, Yvan R.

Petillot, Maurice Fallon, Daniel Cremers. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2018
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Chapter 5 elaborates on the technique introduced in Chapter 4. As this was

a vision-only method, it is still susceptible to failure when moving

objects occupy a large portion of the image. Here, we extend this

method by combining it with information from a gyroscope. We col-

lect a dataset of RGB-D-gyroscope sequences in increasingly dynamic

scenes with motion capture ground truth trajectories and evaluate the

contributions of motion segmentation and motion prior integration for

achieving robustness.

In addition to the technical contribution, the remaining structure of the thesis is as

follows:

Chapter 2 describes the tools used in this work, including mathematical pre-

liminaries, the sensors used during experiments and the dense vi-

sual SLAM system ElasticFusion [54] which formed the baseline.

Chapter 6 summarises the contributions of this thesis and discusses future re-

search directions.

Appendix A provides links to open-source code, datasets and videos produced

as part of our research.

Appendix B cites other research this project has contributed to which does not

form a part of this thesis.
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Chapter 2

Preliminaries

This chapter provides an overview of the tools used within this thesis including con-

cepts of 3D Geometry and methods for minimising non-linear cost functions. We de-

scribe the sensors used during experiments and the dense visual SLAM system which

formed the baseline of this research, ElasticFusion [54].

2.1 Mathematical Concepts

This section describes some of the tools required for computing motion estimation,

including methods for how to minimise least-squares energies and how to formulate

such energies in terms of 3D motion.

Notation We refer to matrices as bold upper-case letters (M ), vectors as bold lower-

case letters (v) and scalars as lower-case letters (s).

2.1.1 Non-linear Least-squares Energy Minimisation

Within this thesis motion estimation is formulated as an energy minimisation problem.

The proposed energies are non-convex and non-linear which means it is not trivial to

find a solution. We solve these problems using least-squares optimisation techniques

as they are efficient enough to run in real-time, as opposed to global search methods.

Least-squares problems aim to find a solution x ∈ Rn which minimises a sum of

m squared non-linear residual functions ri : Rn → R. This can be formulated as:

E(x) =
1

2

m∑
i=1

r2
i (x) . (2.1)
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These are iterative search techniques which, given an initial guess of the solution,

perform local gradient operations on the residual functions in order to improve the

solution until a local minima is found.

Next, we discuss the least-squares methods used within this thesis.

2.1.1.1 Newton Method

The Newton Method is an iterative approach for approximating the root of a scalar

function [80]: for a smooth function f : R → R, the goal is to find x ∈ R such that

f(x) = 0.

Given an initial solution guess xn, the Newton Method uses first order approxima-

tions to estimate the next solution xn+1 = xn + δ:

f(xn+1) = f(xn + δ) ' f(xn) + f ′(xn)δ . (2.2)

The goal is to find a root, (i.e. f(xn+1) = 0), so the iterative update step is:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.3)

This is equivalent to iterated tangent line approximations and Figure 2.1 illustrates

the behaviour of the Newton Method for an example function.

Eq. 2.3 is iterated until f(xn+1) ' 0 or until consecutive solutions are very similar

to each other (xn+1 ' xn) , indicating that a local minima has been reached and the

solution cannot be improved further.

For this procedure to work, it is necessary that the initial guess is close to a true

root and that the derivative of the function is not close to zero or very small within the

neighbourhood of the root.

If the problem is to find the minimum of a function, and not the root, the Newton

Method is applied onto the function derivative instead of the original function. In this

case, the update equation is:

xn+1 = xn −
f ′(xn)

f ′′(xn)
. (2.4)
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Figure 2.1: A sketch example of the performance of the Newton Method for iteratively find-
ing the root of a given function, namely finding x for which f(x) = 0. The approach requires
an initial guess (x0, y0). It then computes the intersection of the tangent (tan0) through (x0, y0)
and the X axis, x1. (x1, y1) is now the new guess, which is already much closer to the solu-
tion than the initial guess (x0, y0). As a solution is not yet found, the iteration is repeated
(e.g. (x2, y2) is the solution of the next step).

2.1.1.2 Gauss-Newton Method

Gauss-Newton is an application of the Newton method to least-squares problems.

The goal is find a solution x ∈ Rn to minimise a sum of m squared non-linear residual

functions ri : Rn → R [81]:

E(x) =
1

2

m∑
i=0

r2
i (x) . (2.5)

Finding the minimum of this function with the Newton Method implies iteratively

applying an update step similar to Equation 2.4, which requires computing the first

and second derivatives of E:

∇E(x) =
m∑
i=0

ri(x)∇ri(x) ; (2.6)

∇2E(x) =

m∑
i=0

∇ri(x)∇ri(x)T +

m∑
i=0

ri(x)∇2ri(x) '
m∑
i=0

∇r(x)∇r(x)T . (2.7)
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Gauss-Newton performs an approximation when computing ∇2E by neglecting

the second order derivative term of E (Equation 2.7). This is done because in many

cases the second order derivative is difficult to compute analytically. The approxima-

tion is reasonable when residuals are very small (i.e. ri(x)→ 0), as in this case∇2ri(x)

is cancelled out.

One can rearrange these error terms using the stacked residual vector r and stacked

Jacobian J , where:

r(x) =


r1(x)

...

rm(x)

 and J(x) =


∂r1
x1

. . . ∂r1
xn

...
. . .

...
∂rm
x1

... ∂rm
xn

 . (2.8)

To obtain simpler forms for the gradients in Equations 2.6 and 2.7:

∇E(x) = J(x)Tr(x) ; ∇2E(x) = J(x)TJ(x) . (2.9)

Resulting in the update step:

xn+1 = xn − (J(x)TJ(x))−1J(x)Tr(x) . (2.10)

2.1.1.3 Iteratively Reweighted Least Squares

Optimising over the squared residual functions r2
i is problematic in practice due to the

presence of outliers in the data which can produce high errors and guide the solver

towards the wrong solution. In practice it is common to use an M-estimator to weight

the residual functions in order to discriminate between inliers and outliers [60] [82].

In this case, the formulation of the energy function becomes:

E =
m∑
i=1

F (ri(x)) . (2.11)

There are many options for choosing the penalty function F , with popular choices

including Huber [27], which is convex but linear, Cauchy [79], a logarithmic penalty,

or Tukey’s biweight function [75] which sets the influence of very high residuals to

zero.

In this thesis, we make use of the Cauchy robust penalty, a compromise between

Huber and Tuckey, which applies a logarithmic penalty onto the influence of residuals:
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F (r) =
c2

2
ln

(
1 +

(r
c

)2
)
, (2.12)

where c defines how strongly residuals are penalised.

However, in this case E does not have a least-squares formulation (Eq. 2.11). Nev-

ertheless, it is possible to obtain a least-squares alternative formulation to E. To min-

imise E, one computes its derivative with respect to x and sets this to zero:

∂E

∂x
=

m∑
i=1

∂F (ri(x))

∂ri(x)

∂ri(x)

∂x
=

=
m∑
i=1

∂ c
2

2 ln

(
1 +

(
ri(x)
c

)2
)

∂ri(x)

∂ri(x)

∂x
=

=
m∑
i=1

1

1 +
(
ri(x)
c

)2 ri(x)
∂ri(x)

∂x
=

=
m∑
i=1

w(ri(x))ri(x)
∂ri(x)

∂x
= 0 ,

(2.13)

for w(ri(x)) = 1

1+
(

ri(x)

c

)2 .

If one computes w(ri(x)) for the current estimate xc and maintains this quantity

constant for the current iteration, one can instead solve for the weighted-least squares

problem [83]:

E′(x) =
1

2

m∑
i=1

w(ri(xc))r
2
i (x). (2.14)

This is because the minimizer of E′ takes the same form as that of E:

∂E′

∂x
=

1

2

m∑
i=1

w(ri(xc))2ri(x)
∂(ri(x))

∂x
=

=

m∑
i=1

w(ri(xc))ri(x)
∂(ri(x))

∂x
= 0 .

(2.15)

To solve the weighted least-squares energy E′, the update iteration then becomes:

xn+1 = xn − (J(x)TWJ(x))−1J(x)TWr(x) , (2.16)

whereW is the diagonal matrix containing the per-residual weights w(ri).
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2.1.2 3D Rigid Body Motion

Given two 3D reference frames, A and B, the pose of frame B with respect to frame A

can be described using a transformation TA→B ∈ SE(3) which consists of a translation

tA→B ∈ R3 and a rotation RA→B ∈ SO(3). Transformations can be stored in matrix

representation, taking the form:

T =

 R3×3 t3×1

0 0 0 1

 .

Using transformation matrices, one can transform a point from one reference frame

to another or apply multiple consecutive transformations through matrix multiplica-

tion. Importantly, transformation matrices do not suffer from singularities, unlike

Euler angles.

However, they are overparametrised representations due to the rotation compo-

nent which requires 9 interdependent parameters to be represented. For this reason,

transformation matrices cannot directly be used within optimisation procedures such

as the ones described in the previous section, as these are designed for flat Euclidean

spaces, i.e. Rn. Optimisation requires a minimal representation of 3D poses, meaning

there should be 6 parameters fully representing the 6 degrees of freedom.

For this, we make use of Lie group theory [84] which allows to relate elements

of Lie groups, SE(3), with elements of their corresponding Lie algebras, se(3), with a

minimal representation (i.e. ξ ∈ se(3) ∈ R6) . The Lie algebra is the tangent space at

the identity of a Lie group: it is locally flat and defines how the group behaves around

the identity.

Mapping between the Lie group SE(3) and Lie algebra se(3) is done through the

exponential and logarithmic operations [84]. Consider ξ ∈ se(3), where ξ = (ν, ω)T ,

with ν,ω ∈ R3 representing the translational and rotational components of ξ respec-

tively and where the skew-symmetric form of ω is denoted as ω×:

ω× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .
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Mapping from a twist ξ to a transformation matrix T is done through the expo-

nential operation:

exp : se(3)→ SE(3) ; (2.17)

exp(ξ̂) = T4×4 , (2.18)

where ξ̂ contains the skew-symmetric form of the rotational component of ξ:

ξ̂ =

ω× ν

0 0

 =


0 −ωz ωy νx

ωz 0 −ωx νy

−ωy ωx 0 νz

0 0 0 0

 .

Inversely, mapping from a transformation T to a twist ξ is computed using the

logarithmic operation:

ξ̂ = log(T ) . (2.19)

For simplicity of notation, this thesis assumes that both exp and log operations also

perform the conversion to/from skew-symmetric notation.

When estimating the pose of a moving sensor in time, transformation matrices are

used to represent global poses and twist representations are used to compute incre-

mental pose updates through optimisation.

For example, for a sensor with a global pose T , the computation of its infinitesimal

motion update ξ is defined as a local optimisation problem, where an initialisation of

the twist at the identity is valid (i.e. ξ0 = 06×1). The optimisation problem is then

solved using the non-linear least squares techniques discussed previously:

E(ξ) =
1

2

n∑
i=1

r2
i (ξ) . (2.20)

After every iteration, the global pose T is then updated as:

Tn+1 = Tn exp(ξ) . (2.21)

This allows maintaining the global pose in a singularity free transformation while

updates are performed using a minimal parameter representation which is free from

singularities in the local space.
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(a) Carnegie Robotics
MultiSense SL

(b) Intel RealSense ZR300 (c) Asus Xtion Pro Live

Figure 2.2: The 3D visual sensors used within this thesis: passive stereo (2.2a), active stereo
2.2b and structured light 2.2c.

2.2 Computer Vision

In this section we provide an overview of the visual sensors and the baseline dense

visual SLAM system used within this thesis, ElasticFusion [54].

2.2.1 3D Visual Sensors

We use cameras which sense intensity as well as distance for each pixel in an image.

There are many methods for producing depth cameras but in this section we provide

an overview of the ones used within this thesis.

2.2.1.1 Depth from Stereo

In this category, we use the stereo pair within the Carnegie Robotics MultiSense SL

and the Intel RealSense ZR300 camera.

In a stereo set-up two cameras are used to compute per-pixel depth. Given two

images captured simultaneously by both cameras, one identifies, for each pixel in the

first image, its corresponding pixel in the second image. The difference between the

coordinates of these pixels is called disparity. The larger the disparity, the closer the

corresponding 3D point is to the camera. Given the disparity and the known spatial

calibration between the two cameras, the 3D coordinates of each pixel can be com-

puted by triangulation.

The Carnegie Robotics MultiSense SL1 (Figure 2.2a) functions in this manner. It

contains a stereo pair consisting of one colour camera and one greyscale camera. It

1http://docs.carnegierobotics.com/SL/
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estimates disparity using the Semi-global Matching algorithm [85] implemented on

the FPGA of the sensor. It is an entirely passive camera, meaning that it relies only on

the existing light in order to capture its data.

Computing depth from stereo does not work well in the case of repetitive texture

or when there is a lack of texture in the scene. In both cases, this is because unique per-

pixel correspondences cannot be established correctly, rendering the depth estimation

problem impossible to solve.

The Intel RealSense ZR300 2 (Figure 2.2b) handles textureless scenes by generating

artificial texture. This sensor contains a pair of infrared stereo cameras, as well as an

infrared projector. The projector emits a pattern onto the scene, generating texture

and improving the robustness of the stereo matching algorithm. However, this is not

a universal solution. Outdoors, strong sun light may mask the pattern, making it

invisible to the camera. In this case, only the standard passive stereo implementation

of the camera might work.

2.2.1.2 Structured-light Cameras

Within this category, we use the Asus Xtion Pro Live 3 (Figure 2.2c).

This sensor consists of a colour camera, an infrared camera and an infrared projec-

tor. The projector emits a known infrared pattern onto the world, which is perceived

by the camera. The 3D geometry of the world induces a deformation onto the pattern,

which is used to compute per-pixel depth.

This approach for computing depth is more accurate than general stereo depth

estimation as implemented by the Carnegie Robotics MultiSense SL or the Intel Re-

alSense ZR300. However, and as it is also the case for the Intel RealSense ZR300, the

pattern is likely invisible in strong sunlight, meaning that the camera can only be used

indoors.

2.2.1.3 Operational Range of 3D Visual Sensors

It must be noted that for all sensors discussed within this section the operational range

is limited, typically between 0.5m and 5m from the camera. In the case of stereo set-

ups, the operational range depends on the distance between the two cameras (in our

2https://software.intel.com/en-us/realsense/zr300
3https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
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case, this is smaller than ' 10cm for both sensors). In the case of the structured light

camera, this is because the infrared pattern is not clearly visible after a certain distance.

2.2.2 Pinhole Camera Model

Given a 3D point v ∈ R3 in the camera coordinate frame C, we compute its 2D pixel

coordinate x ∈ Ω where Ω ∈ N2 is the image plane using the pinhole projection func-

tion π [86]:

x = π(v) =

fxXZ + ox

fy
Y
Z + oy

 ,v = [X,Y, Z, 1]T ,x = [u, v]T , (2.22)

where fx, fy are the horizontal and vertical focal lengths and ox, oy are offsets to ac-

count for the fact that the optical centre does not coincide with the origin of the image

coordinates. Note that v is expressed in homogeneous coordinates as these are easier

to manipulate using transformation matrices.

The inverse of this function, known as the backprojection operation, is defined as

π−1:

v = π−1(x, Z) =


u−ox
fx Z

v−oy
fy Z

Z

1

 , (2.23)

which computes the 3D coordinates of pixel x given its corresponding known depth

value Z.

2.2.3 Baseline Dense Visual SLAM System - ElasticFusion

The contributions listed in Section 1.4 are formulated and implemented as extensions

of an existing visual SLAM baseline system, ElasticFusion [54]. ElasticFusion is a real-

time dense RGB-D SLAM system with state-of-the art performance regarding camera

pose tracking accuracy and 3D reconstruction quality.

Several design decisions within ElasticFusion motivate us to use this system as a

baseline:

1. It estimates dense 3D models of the scene which can be used for robotic applica-

tions by serving as collision environments.

2. At the time of publishing, it was one of few systems which implemented loop
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closure corrections on the dense 3D model.

3. It supports locally loopy trajectories and revisiting previously seen areas, which

are common robotic motions.

ElasticFusion works in a decoupled fashion, alternating between camera pose track-

ing and dense 3D reconstruction.

Next, we discuss the main components of the system:

1. Dense 3D reconstruction is implemented by representing the environment us-

ing surfels, in a similar technique as proposed by Keller et al. [53] (see Section

1.2.2.1). New surfels are generated as the camera explores new areas and are

added to the 3D model as follows: if a new surfel has a model correspondence,

these are fused together. Otherwise, the new surfel is simply included in the

3D model. Surfels are also allocated a timestamp, which indicates the last time

they have been observed. Based on this, older portions of the model are termed

inactive while new ones are active. This distinction is important for loop closure

implementations.

2. Camera pose estimation works by aligning incoming RGB-D image pairs against

virtual RGB-D image pairs rendered from the active portion of the 3D model from

the current point of view of the camera. The alignment implements photometric

and geometric cost functions.

3. Local loop closures are implemented to correct small drift within the trajectory

estimates which can occur in situations where the camera repeatedly scans the

same areas of a small scene. A local loop closure is implemented by registering

virtual views from the active and the inactive portions of the 3D model from the

current camera pose estimate. If these views are considered to be in alignment,

the model is non-rigidly deformed into place.

4. Global loop closures are implemented to handle more significant drift. This im-

plements a place recognition technique based on the work proposed by Glocker

et al. [87]. It consists of building a random fern database of rendered views of pre-

viously visited scenes. At every time step, the database is queried for a match for

the current view. If a match is found, the whole model is non-rigidly deformed

to guarantee a consistent reconstruction.
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This thesis is mainly concerned with robust camera pose estimation, so we provide

additional details regarding this component here.

2.2.3.1 Camera Pose Estimation

Camera pose tracking works in a frame-to-model formulation: the input is an RGB-D

image pair (CD, ZD) which is aligned against an artificial RGB-D image pair (CM , ZM )

rendered from the 3D model from the point of view of the previous camera pose.

Visual tracking in ElasticFusion is formulated as an optimisation problem over

both photometric and geometric data. We discuss these components next.

Geometric Alignment The geometric component of camera pose estimation imple-

ments Iterative Closest Point (ICP).

Given the current depth image ZD, a 3D point vpD is computed for every pixel p

given its coordinate on the image plane xp ∈ Ω, its depth value ZD(xp) and assum-

ing the pinhole reprojection function π−1 (Eq. 2.23). Similarly, vertices vqM are also

computed from the predicted depth map ZM , in addition to per-point normals nqM .

Correspondences between the two point clouds are computed using projective

data association. To remove outliers, correspondence pairs are then filtered using

thresholds on the Euclidean distance between the vertices (vpD, vqM ) and on a maxi-

mum angular distance between the input vertex vpD and the normal nqM .

After this preprocessing step, one residual is formulated for each pair of correspon-

dences, minimising the point-to-plane error between input and predicted vertices:

rpicp(ξ) =
(
vqM − exp(ξ)TvpD

)
· nqM , (2.24)

where T is the current total estimated transformation between the input image ZD

and the model ZM . The camera pose tracking problem is then implemented within a

least-squares formulation over the list of valid correspondence pairs M :

Eicp(ξ) =
1

2

∑
p∈M

(rpicp(ξ))2 . (2.25)

Photometric Alignment For photometric alignment, both current and predicted colour

images (CD, CM ) are first converted to intensity images (ID, IM ). They are then regis-

tered in a direct and dense formulation.
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For every pixel p ∈ Ω, a residual is formulated to compute the difference in inten-

sities against its corresponding pixel in IM , established by projection:

rprgb(ξ) = IM
(
π(exp(ξ)T π−1(xp, ZD(xp)))

)
− ID(xp) , (2.26)

where T is the current total estimated transformation between the input image ID

and the model IM .

This procedure also includes a filtering step for pixel correspondences, removing

those pairs for which corresponding vertices are further than a set Euclidean distance

and also discounting pixel pairs which are located in textureless regions.

Finally, the photometric energy term is formulated as a least-squares problem over

the set of valid pixel correspondences N :

Ergb(ξ) =
1

2

∑
p∈N

(rprgb(ξ))2 . (2.27)

Photometric alignment is sensitive to illumination changes and increased robust-

ness to this situation can be achieved by combining it with geometric alignment.

Complete Formulation The combined pose tracking energy function is defined as

follows:

E(ξ) = wErgb(ξ) + Eicp(ξ) . (2.28)

The weight w is empirically set to 0.1 reflecting the difference in units between the

two error terms: metres as used in Eicp and pixel intensity values as used in Ergb.

Design of Solver This energy function is solved using the Gauss-Newton iterative

algorithm for solving non-linear least squares problems (described in Section 2.1.1.2).

Next we discuss how it is applied to the problem of image alignment. Algorithm 1

lists the procedure for implementing the solver.

Linearisation The solver is initialised with the initial guess ξ = 06×1, which is

reasonable for high frame-rate cameras. At each iteration, an incremental estimate ∆ξ

is computed by solving the linear system of equations:

(wJ>rgbJrgb + J>icpJicp)∆ξ = −(wJ>rgbrrgb + J>icpricp) . (2.29)
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Algorithm 1: Frame-to-model alignment in ElasticFusion
Input: ID, ZD, IM , ZM
compute image pyramids for ID, ZD, IM , ZM ;
initialise ξ = 06×1;
foreach level of the pyramid do

foreach iteration do
compute ICP correspondences given current ξ;
compute RGB correspondences given current ξ;
compute ricp and rrgb;
solve for ∆ξ;

(wJ>rgbJrgb + J>icpJicp)∆ξ = −(wJ>rgbrrgb + J>icpricp);
update ξ;

ξ = log(exp(ξ) exp(∆ξ))

Using the stacked Jacobian and residual notation introduced in Section 2.1.1.2. The

Jacobians Jicp and Jrgb are computed as:

Jrgb =
∂rrgb
∂ξ

∣∣∣∣
ξ=0

, Jicp =
∂ricp
∂ξ

∣∣∣∣
ξ=0

. (2.30)

After solving this linear system of equations, ∆ξ is used to update the estimate ξ

between two consecutive iterations k and k + 1 as follows:

ξk+1 = log(exp(ξk) exp(∆ξ)) . (2.31)

It is possible to still evaluate the Jacobians Jicp and Jrgb at ξ = 0 even after ξ is

updated. This is because the residual formulations of ricp and rrgb decouple the total

motion estimated up to this point, T , from the current incremental estimate, ξ.

Image Pyramid Registration Gauss-Newton makes use of second-order approx-

imations to solve E, which are only valid locally and provide a small basin of con-

vergence for the solver. In order to ensure robustness to large motions, the solver is

run in a coarse-to-fine scheme. The image pairs (ID, ZD) and (IM , ZM ) are repeatedly

blurred and downsampled to create an image pyramid and the energy minimisation

procedure is run starting from the coarsest levels towards the finest. After the solver

has converged, the global pose of the camera is updated as:

Tt+1 = Tt exp(ξ) . (2.32)
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2.3 Evaluation Metrics

In this thesis, we are estimating the pose of a moving sensor. In order to evaluate the

performance of proposed approaches, we make use of several quantitative metrics.

These metrics assume that, along with the estimated trajectory of the moving sen-

sor, there is also ground truth knowledge of the sensor’s trajectory. This is typically

obtained from a separate motion capture system.

The trajectories estimated by our algorithm and the ground truth system must

be synchronised and calibrated such that for each 3D pose estimated by our system,

there exists a corresponding 3D pose estimated by the ground truth system, measured

at the same time and within the same coordinate frame. In practice, one can achieve

millisecond accurate synchronisation and millimetre accurate spatial calibration. The

techniques used to perform synchronisation and calibration are described in Chapters

3 and 5.

Assuming this set-up, evaluation can be carried out as follows. We refer to (est)TAti→Btj

as the transformation measured by the estimator est of frame B at time tj relative to

frame A at time ti. We make use of the reference frames C, which represents the cam-

era frame, and W , which represents the world frame (the origin).

We evaluate the performance of our proposed estimator est against the ground

truth gt.

2.3.1 Absolute Trajectory Error

To compute the absolute trajectory, the ground truth and estimated trajectories must

be aligned in the least-square sense. For this, we first establish pairs of corresponding

poses between the trajectories based on the timestamps and then perform Procrustes

analysis to recover the 3D transformation Q that maps the estimated trajectory onto

the ground truth trajectory.

At time t, the error between corresponding poses is [26]:

ATEt = (gt)T−1
W→Ct

Q(est)TW→Ct . (2.33)
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2.3.2 Relative Pose Error

To measure drift between two corresponding trajectories, we compute the relative

pose error over a time interval ∆ at each timestep t [26]:

RPEt = (gt)T−1
Ct→Ct+∆

(est)
TCt→Ct+∆ . (2.34)

2.3.3 Drift per Distance Travelled

We divide the relative pose error by the length of the path travelled to obtain the drift

per metre travelled:

DDTt =
RPEt

t+∆∑
k=t

||(gt)tCk→Ck+1
||
. (2.35)

We compute these metrics over all timestamps and calculate the root mean square

error (RMSE) over all poses for an entire trajectory.

2.4 Robotics

In this section we describe the fundamental robotics concepts used within this thesis.

2.4.1 Proprioceptive Sensors

We discuss some of the sensors used within this thesis and give a high level overview

of their functionality.

• Inertial Measurement Units (IMUs) typically consist of 3-axis gyroscopes and

3-axis accelerometers.

– Gyroscopes measure 3D angular velocity. By taking into account the amount

of time between consecutive measurements, this sensor can be used to esti-

mate the cumulative 3D rotation of a platform.

– Accelerometers measure 3D linear acceleration. On a static platform, this

sensor reports acceleration induced by gravity from which estimates of the

roll and pitch rotations of the platform can be computed. As rotations about

the gravity vector are not sensed, yaw cannot be computed.
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In combination with vision, accelerometers can also be used to estimated

linear velocity or positional quantities. Vision is required in this case to pro-

vide a prior velocity estimate which can subsequently be updated through

acceleration integration. Such techniques also require an accurate estimate

of the orientation of the sensor in order to decouple gravity from the motion

of the platform.

For accurate results it is common in practice to also estimate a time-varying bias

for both sensors.

• Joint Encoders are used to measure the position of an axle. They are typically

placed in a robot’s joints to measure the angle of each joint.

• Force-Torque Sensors report the forces and torques which are applied onto it on

contact. On legged robots, force-torque sensors are typically placed in the feet

and used to detect when they are in contact with the ground.

2.4.2 Forward Kinematics

Forward kinematics is a technique which enables estimating the location of each joint

on a robot with respect to any other joint. It requires a known 3D model of the robot

describing the dimensions of each link and it assumes that it is possible to sense the

position of every joint (e.g. by having each joint equipped with an encoder).

A

B

W

C

Figure 2.3: Assuming a known 3D model of the robot arm and known joint angles computed
from encoders, the pose of the end-effector C can be computed with respect to the base W
using forward kinematics.

Consider Figure 2.3, showing a robot arm. The known 3D model of the robot pro-

vides information about the relative transformations of the links, TW→A,TA→B,TB→C ,
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while the joint encoders measure the current angle of each joint, namelyTA→A′ , TB→B′ .

Thus, one can compute the pose of the end-effector, C, with respect to the base, W , as:

TW→C = TW→ATA→A′TA′→BTB→B′TB′→C . (2.36)
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Part II

Contributions
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Chapter 3

Camera Pose Estimation with

Motion Prior Integration Applied to

Humanoid SLAM

In this chapter we present an approach for visual SLAM applied to the humanoid

robot Valkyrie. Visual SLAM on robotic platforms can be subject to the following four

challenges:

• The robot may point its camera towards areas in the environment which lack

texture;

• The robot may perform fast motions or be shaking (due to instability) which can

introduce significant motion blur into the images;

• Changes in illumination may occur;

• Moving objects may be present in the environment.

These situations pose significant difficulties to current state of the art visual SLAM

systems. Indeed, in some cases it is not possible to operate successfully by relying

only on visual sensors such as cameras.

Fortunately, robotic platforms are typically also equipped with other sensors, such

as IMUs or joint encoders, which provide additional information typically used as

input to the robot’s locomotion system. We leverage this proprioceptive sensing to

aid our visual SLAM system to achieve robust operation under the stated real-world

challenges.
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We propose an approach for camera pose estimation which fuses visual odometry

from a stereo camera with a motion prior from a kinematic-inertial state estimator. The

fusion is formulated as an optimisation problem and a non-linear least squares solver

is used to compute a solution.

The proposed approach is using data from the Valkyrie robot. Performance was

evaluated using ground truth of the robot’s motion from a Vicon motion capture sys-

tem. We find that fusion of visual odometry and a kinematic-inertial motion prior

significantly improves the robustness of the visual SLAM system to the four chal-

lenges mentioned above. In addition, the visual SLAM system is used to correct drift

within the kinematic-inertial state estimator, while the resulting 3D reconstruction can

be used to execute collision-free motions.

3.1 Humanoid State Estimation and Visual SLAM

State estimation and visual SLAM are related techniques but have different purposes

on humanoid robots.

Kinematic-Inertial State Estimation for Legged Robots State estimation is a core

requirement for reactive or closed loop controlled robots where the robot’s action is

a function of its current state. Estimators used within closed loop applications must

run at high frequency and low latency, in order to allow the controller to quickly cor-

rect the robot’s motions. In addition, it is important that state estimates are locally

very accurate and show a low level of noise, in order to prevent the controller from

overcompensating and thus causing the robot to move erratically.

On humanoid robots, state estimation is typically implemented using a combina-

tion of inertial sensing (gyroscopes and accelerometers), kinematic sensing in the legs

and force-torque sensing in the feet. These are low-latency sensors which enable esti-

mation of the robot’s position, orientation and velocity at high frequency (>200 Hz).

One group of approaches, including [88] and [89], use the inverted pendulum

model to estimate the centre of mass (CoM) as this is the quantity of interest for con-

trol purposes. These approaches explicitly measure the deviation of the CoM value

from the expected value, allowing for the detection of anomalies such as unexpected

contact.

Other approaches estimate the motion of a specific link (typically the root link of
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the kinematic chain) by incorporating the individual sources of information within a

filtering framework ([90, 91, 92]). These approaches were successfully demonstrated

on the Boston Dynamics Atlas humanoid robot during the DARPA Robotics Chal-

lenge.

On quadrupeds, techniques have also been proposed for robots which are not

equipped with contact sensors on the feet. Bloesch et al. [93] handle this by design-

ing an Extended Kalman Filter where the state contains not only the body pose of the

robot, but also the absolute positions of the foot contact points. Further work extends

this and proposes a method which is more robust to slippage [94]. Camurri et al. [95]

also propose a leg odometry module without requiring contact sensors on the feet, by

proposing a probabilistic method to estimate reliable contact.

Visual SLAM for Humanoid Robots To a certain extent, a humanoid robot can op-

erate only using a kinematic-inertial state estimator. A SLAM system is required when

the robot must be aware of its location with respect to the environment. However, in

most applications, pose estimates provided by SLAM systems are computed at lower

frequency and with a higher level of local noise compared with state estimation sys-

tems. Nevertheless, they provide pose estimates which are globally accurate and con-

sistent with the sensed environment.

There is a significant history of research in visual localisation and SLAM on hu-

manoids. Initially, this focused on feature-based methods and Extended Kalman Fil-

ters (EKF). Stasse et al. [96] adapted MonoSLAM [21], a monocular EKF-based SLAM

algorithm, to exploit knowledge about the HRP-2 robot’s motion from its pattern gen-

erator and inertial sensing to improve the robustness of pose tracking. The work was

a notable early example demonstrating loop closure on a humanoid.

The fusion of a visual SLAM method with proprioception was also used in the

work of Ahn et al. [97] who implement loose coupling of forward kinematics, inertial

estimates and visual odometry to improve the robustness of visual SLAM on their

humanoid robot.

Oriolo et al. [98, 99] instead implemented a complementary strategy to fuse pose

corrections from their sparse visual SLAM system within their EKF-based kinematic-

inertial state estimator. Demonstrations were carried out on the Nao robot. Kwak et

al. [100] proposed a particle filter-based SLAM method using a stereo camera. They
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attempted to build a 3D grid map for localisation but noise in the stereo data required

them to only record camera data from stationary positions. They also mentioned that

corruptions were introduced into their reconstructions by areas of the environment

with no texture.

A common characteristic of these works is that they used sparse representations.

These are useful for localisation but cannot be interpreted visually or be used for path

planning. Recent approaches have also explored applying dense visual SLAM tech-

niques to locomoting robots.

Wagner et al. [101] fused robot wheel odometry (i.e. not a bipedal robot) with a

dense SLAM solution based on a pose-graph extension of KinectFusion. Their work

combines the two modalities but as the robot’s motion is planar and smooth it avoids

the complexities of true humanoid SLAM.

Fallon et al. [102] integrated a dense SLAM approach on the Atlas humanoid robot.

It provided a dense reconstruction as input to the robot’s footstep planning system.

However, it did not support loop closure for locally loopy trajectories, which has mo-

tivated this work.

We investigate the application of a direct semi-dense SLAM method and aim to

achieve sufficient robustness during the walking and turning motions of the robot.

We chose ElasticFusion for the current work as it is designed to handle locally loopy

trajectories which are common in typical humanoid manipulation scenairos. Frame-

by-frame fusion of 3D data results in an up-to-date environment model which can be

used for collision-free motion planning.

3.2 The Valkyrie Humanoid Robot

In this section we discuss the functionality of the Valkyrie robot and configuration of

the relevant sensors used. We explain our procedures for synchronising the sensor

data and calibrating the robot’s joints. Finally, we explain the pre-processing filters

implemented for noise removal from the camera images.

3.2.1 Hardware Overview

The NASA Valkyrie is a 1.8 m tall, electrically actuated humanoid robot. It weighs

125kg, with a 32 degrees of freedom body and 6 degrees of freedom hands.
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The robot contains a Carnegie Robotics Multisense SL global-shutter stereo camera

installed in its head (Figure 3.1). The sensor provides 1024×1024 image pairs of colour

and corresponding disparity at a rate of 15 Hz. The lenses have a field of view of

80◦×80◦. Disparity is computed by an implementation of Semi Global Matching [85]

running on an FPGA on board the device.

Regarding proprioceptive sensing, it is equipped with a Microstrain GX4-25 MEMS

IMU mounted in its pelvis, force-torque sensors in its feet and position encoders on

each joint.

Figure 3.1: The NASA Valkyrie is a 1.8 m tall electrically actuated humanoid robot. Within
its head is a Carnegie Robotics Multisense SL which combines a rotating LIDAR sensor and a
stereo camera. The sensor is inverted on the robot. (photo credits: NASA and CRL)

3.2.2 Synchronisation and Calibration

The robot is operated through two on-board computers and one separate workstation

equipped with a GPU, which is used to run our SLAM algorithm.

All computers are time synchronised through the network using chrony1. The

MultiSense SL provides the camera image time stamps while the other sensor data is

time stamped using the data arrival time on the computer which runs the sensor’s

driver. This type of synchronisation is accurate for the near real-time proprioceptive

1https://chrony.tuxfamily.org/
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sensors (IMU, joint encoders and force-torque) which have a latency of less than 1ms.

We performed periodic calibration of the joint encoders (i.e. every few months)

using manufactured jigs (e.g. Figure 3.2). The purpose of these jigs is to aid us in re-

setting the encoders to an established origin value.

Figure 3.2: Example of an aluminium jig used to calibrate the hip joint position.

3.2.3 Stereo Pre-processing

Our stereo camera produces dense disparity images at a rate of 15Hz. However, some

of the disparity estimates are not accurate, particularly ones corresponding to areas in

the image with low texture. These areas are problematic for the block matching algo-

rithm because a particular low-texture patch within the left camera image will have

many possible corresponding patches within the right image with similar appearance.

It is thus very difficult to estimate correct correspondences within texture-less scenes,

leading in turn to incorrect disparity estimates for such regions.

We implement pre-filtering procedures where we remove data from textureless

regions by computing for each pixel the gradients in the vertical, horizontal and di-

agonal directions over a 5×5 pixel window. If these gradients are small, the pixel is

considered to be in an area of low texture and is dropped.

The stereo cameras are set-up in a horizontal configuration, which makes estimat-

ing the disparity of horizontal edges unreliable. We discard data originating from

edges oriented at an angle of less than 10 degrees from horizontal.

Finally, we remove small unconnected groups of points which could occur due to

specular effects.

Figure 3.3 gives a qualitative impression of the effect of this filtering procedure.
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(a) Colour Image
(b) Raw Stereo Point Cloud

(c) Filtered Stereo Point
Cloud

Figure 3.3: The raw disparity images are filtered to remove unreliable data. (a) the original
colour image. (b) the corresponding raw stereo point cloud - red circles highlight erroneous
depth from areas of low texture, such as the floor and a green sheet reconstructed appart from
its actual location (indicated with an arrow). (c) the result of our filtering procedure.

3.3 Methodology

In this section we describe our approach for visual SLAM applied to the Valkyrie hu-

manoid robot.

First, we discuss the kinematic-inertial state estimator running on the robot which

is used to compute a motion prior of the camera pose estimate. Following this, we

describe the visual SLAM system used as a baseline in our integration project. Fi-

nally, we propose our approach for robust camera pose estimation fusing vision and

kinematic-inertial data, formulated as an optimisation problem.

3.3.1 Notation

A pose is denoted as a transformation matrix T , within the class of rigid body motions

forming the special Euclidean group SE(3), composed of a rotation matrix R ∈ SO(3)

and a translation vector t ∈ R3. We refer to (est)TAti→Btj
as the transformation mea-

sured by the estimator est of frame B at time tj relative to frame A at time ti.

We make use of a kinematic-inertial state estimator which tracks the pose of the

pelvis in the world frame, (ki)TW→Pt . Our visual SLAM system tracks the pose of

the camera in the world, (vt)TW→Ct using consecutive pairs of images from the stereo

camera.

The pelvis frame P and the camera frame C are connected through a non-rigid

kinematic chain containing three back joints and three neck joints. Forward kinematics

is used to relate measurements between the pelvis and camera frame at each time step
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Figure 3.4: The major coordinate frames of our system. These frames are connected via a
time-varying kinematic tree.

t as (fk)TPt→Ct .

Figure 3.4 shows the kinematic tree of the robot describing the coordinate frames

and corresponding transforms between the different sensors.

Our system is based on the fusion of the kinematic-inertial state estimator and

visual SLAM. We now describe these individual sources of information.

3.3.2 Kinematic-Inertial State Estimation

The kinematic-inertial state estimator used within our system is based on the approach

of Koolen et al. [90].

This is an EKF-based state estimator which computes the 3D orientation, linear

velocity and position of the pelvis root link. It makes use of sensor measurements

from the six joints in each leg, force-torque sensors in each foot and an IMU rigidly

attached to the pelvis.

The IMU implements an on-board EKF which fuses 3-axis accelerometer and gy-

roscope measurements to produce 3D orientation estimates that do not drift about the

roll and pitch directions. This orientation estimate is used directly within our own
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EKF.

The force torque sensors in the feet are used to estimate when the foot has made

reliable contact with the ground. Once this is established, the joint encoders and

known robot models are used to compute the 3D translation and velocity of the pelvis,

through leg odometry.

This pose estimate is computed at high frequency (250 Hz), low latency (2-3 msec)

and remains aligned to gravity. Its directions of drift are along yaw rotation and all

linear degrees of freedom. Thus, the system overall has 4 degrees of freedom for drift.

This state estimator was originally implemented on the Atlas humanoid robot and

demonstrated within the DARPA Robotics Challenge. Subsequently, it has been inte-

grated within Valkyrie and provides direct input to the low-level control system.

Motion prior computation The state estimator computes the continuously evolving

pelvis pose of the robot, (ki)TW→Pt . Using the pelvis pose estimates corresponding

to the timestamps of consecutive images, t to t + 1, and the pelvis-to-camera forward

kinematics, the incremental motion of the camera can be computed as follows:

(ki)TCt→Ct+1 =
(

(ki)TW→Pt

(fk)
TPt→Ct

)−1 (
(ki)TW→Pt+1

(fk)
TPt+1→Ct+1

)
. (3.1)

In practice, state estimation measurements will not be computed for the exact same

time stamps of the camera images. To account for this, we interpolate state estimation

poses to generate poses for the camera time stamps.

The performance of this estimator is evaluated in Section 3.4.

3.3.3 Visual SLAM Baseline System

We implement our visual SLAM system by extending ElasticFusion [54], a real-time

dense SLAM system for RGB-D cameras. This system was chosen as a baseline be-

cause it is designed to handle locally loopy trajectories typically performed by our

robot. In addition, it builds dense 3D models of the environment which can be used

for collision-free motion planning.

The visual odometry component of ElasticFusion is described in Section 2.2.3.1.

The contribution of this chapter is a procedure to incorporate information from the

robot’s proprioceptive sensors. This is described next.
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3.3.4 Visual Odometry and Motion Prior Integration

The fusion of a kinematic-inertial state estimator with visual SLAM is desirable be-

cause the modalities are complementary: the state estimator can handle degenerate

cases where the vision system fails entirely, such as a lack of visual features or changes

in illumination, while at the same time it provides information about global roll and

pitch through the IMU. Through force-torque and joint encoder sensing, we can reli-

ably estimate the linear velocity of the robot. Our goal is to limit the typical drift of

the kinematic-inertial estimate through frame-to-model alignment and loop closures

as performed by ElasticFusion.

Given the cumulative rigid body motion as sensed through kinematic-inertial mea-

surements between two consecutive image frames ξki = log((ki)TCt→Ct+1) taken from

Equation 3.1, we define a residual rki which computes the error between the current

incremental estimate ξ and the kinematic-inertial estimate ξki:

rki(ξ) = log(exp(ξki) exp(ξ)−1) . (3.2)

Note that as opposed to the scalar vision-related residuals rrgb, ricp (Equations 2.24,

2.26), rki is a 6× 1 dimensional vector. The corresponding energy term is defined as:

Eki(ξ) = rki(ξ)>rki(ξ) . (3.3)

This term is added to the global energy function in Equation 2.28 with a corre-

sponding weight q:

E(ξ) = wErgb(ξ) + Eicp(ξ) + qEki(ξ) . (3.4)

The solver is initialised with a motion estimate ξ = 06×1 and incremental updates

∆ξ are computed by solving the updated linear system of equations (corresponding

to Equation 2.29):

(wJ>rgbJrgb + J>icpJicp + qJ>kiJki)∆ξ = −(wJ>rgbrrgb + J>icpricp + qJ>kirki) . (3.5)

In future work we will explore using the kinematic-inertial estimate during initial-

isation (i.e. ξ = ξki) as this should result in faster convergence for the solver.
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Similarly to the vision-specific Jacobians in Equation 2.29, the kinematic-inertial

Jacobian Jki is defined as:

Jki =
∂rki
∂ξ

∣∣∣∣
ξ=0

. (3.6)

It is possible to still evaluate Jki at ξ = 0 even after ξ is updated. This can be done

by an operation equivalent to image warping, but applied to the kinematic-inertial

motion estimate ξki: after every iteration, one can compute an artificial kinematic-

inertial motion estimate ξ̂ki by subtracting the current estimate of the camera motion

until this point in time, ξ:

ξ̂ki = log(exp(ξki) exp(ξ)−1) . (3.7)

This value is then used to substitute ξki every time residuals rki are recomputed

(Equation 3.2) and evaluated at ξ = 0.

Afterwards, ξ is updated between consecutive iterations (k and k+1) as explained

in Equation 2.31 and after the solver has converged, the global pose is updated ac-

cording to Equation 2.32. For clarity, Algorithm 2 reproduces the procedure for frame-

to-model alignment in ElasticFusion (described in Algorithm 1), while highlighting in

blue the changes required for motion prior fusion.

It is worth noting that this system drifts along all 6 dimensions due to the motion

prior being integrated only as a relative pose constraint. In future work we will inves-

tigate techniques to integrate the gravity-aligned orientation provided by the IMU to

achieve similar drift-free estimates along the roll and pitch directions.

Weighting Terms in the Tracking Cost Function A point to consider is choosing

how to balance the numerical contribution of each error term within the tracking cost

function (Equation 3.4).

The kinematic-inertial term provides a single constraint between the previous pose

estimate and the kinematic-inertial pose (Equation 3.2).

However, the ICP and RGB alignment procedures impose one constraint per pair

of matched pixels. This results in an imbalanced number of constraints, and, if not

considered, the kinematic-inertial term would have inconsequential influence.

We implement a simple heuristic for scaling the contribution of the kinematic-

inertial term to have a sufficient influence on the combined motion estimate. Given
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Algorithm 2: Frame-to-model alignment in Humanoid SLAM System
Input: ID, ZD, IM , ZM , ξki
compute image pyramids for ID, ZD, IM , ZM ;
initialise ξ = 06×1;
initialise ξ̂ki = ξki;
foreach level of the pyramid do

foreach iteration do
compute ICP correspondences given current ξ;
compute RGB correspondences given current ξ;
compute visual odometry residuals ricp and rrgb;
compute kinematic-inertial residual rki;

rki(ξ) = log(exp(ξ̂ki) exp(ξ)−1);
solve for ∆ξ;

(wJ>rgbJrgb + J>icpJicp+qJ
>
kiJki)∆ξ =

−(wJ>rgbrrgb + J>icpricp+qJ
>
kirki);

update ξ;
ξ = log(exp(ξ) exp(∆ξ));

update ξ̂;
ξ̂ki = log(exp(ξki) exp(ξ)−1)

the proportion of inliers for the ICP and RGB alignment procedures relative to the

number of pixels in the image (i.e. the percentages ICPp, RGBp), we define a corre-

sponding proportional term for the kinematic-inertial measurement:

1. In a degenerate situation where the proportion of inliers for both ICP and RGB

alignment procedures is low (ICPp, RGBp < 5%), we trust the kinematic-inertial

estimate fully (KIp = 100%).

2. We observed that in well structured environments, the kinematic-inertial term

should contribute slightly more than one third to the total pose error minimisa-

tion. Therefore, we set KIp = max(ICPp, RGBp) + α, where α = 10% was a

suitable value in our evaluation.

The contributions from the ICP, RGB and kinematic-inertial components are evenly

balanced within a well structured scene. However, for sequences with strong light-

ing changes or where moving objects occupy a large portion of the field of view, the

kinematic-inertial component dominates. The weight q (used in Eq. 3.4) is the result

of applying the percentage KIp onto the number of pixels in the image.

Although not addressed here, an additional strategy could be formulated to han-

dle failures in the state estimator. For example, foot slippage could be detected from
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Figure 3.5: The NASA Valkyrie humanoid robot during operation in a laboratory environ-
ment. Note the markers on the ground, which are discussed in Section 3.4.3.

unexpected spikes in velocity and the influence of the kinematic-inertial term could

be reduced during these sequences.

This aspect was not addressed within our work due to practical reasons: it is very

difficult to provoke a foot slippage to our robot that does not result in a loss of balance

and thus a fall of the robot.

3.4 Evaluation

In this section we present an evaluation of our method on a series of experiments with

the Valkyrie humanoid robot. The test environment consists of a manipulation scene

containing several tables with objects on them surrounding the robot (Figure 3.5).

Our laboratory is equipped with a Vicon motion capture system which provides

ground truth trajectory measurements of the pelvis pose. Motion capture markers

are placed on known locations on the pelvis, as shown in Figure 3.6. Also, the Vicon

computer clock is synchronised with the robot workstation clock through the network.

The dataset used as part of this evaluation is described in Table 3.1. Log1 is a short

walking sequence of a single loop trajectory within a static feature-rich environment

(i.e the ideal operating scenario). During this log we also took care not to perform

any fast motions of the neck. Log2 is a longer and locally loopy trajectory containing

several visual challenges which typically cause baseline visual SLAM systems to fail:
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Figure 3.6: Vicon markers are placed on the pelvis to track the pose of the robot during
walking.

Dataset Description

Log
Distance

(m)
Steps

Time
(s)

Lack of
Features

Lights
Off

Motion
Blur

Continuous
Dynamics

Log1 18.5 34 485 7 7 7 7

Log2 62.96 102 1204 X X X X

Table 3.1: Description of the dataset used in this evaluation. X/7 indicates the pres-
ence/absence of a certain challenge.

• Lack of features in the camera view: the camera points at a blank wall while the

robot turns (∼ 20 sec per sequence).

• Changes in illumination: by turning the room’s lighting on and off (∼ 15 sec per

sequence).

• Motion blur: by performing fast head motion (∼ 5 sec per sequence).

• Continuous dynamics in the scene: by introducing moving objects and people

covering more than 50% of the field of view of the camera (∼ 5 sec per sequence).

We start by assessing the tracking performance of the proposed method against

the original ElasticFusion system and the robot’s kinematic-inertial state estimator for

the two collected logs. We demonstrate that the proposed approach overcomes the

typical limitations of visual tracking during challenging situations and corrects state

estimation drift through the implementation of loop closures.
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Following this, we evaluate the accuracy of the stereo reconstruction against LI-

DAR point clouds as produced by the Hokuyo UTM-30LX-EW spinning planar LI-

DAR contained within the MultiSense SL.

Finally, we demonstrate the integration of our algorithm within the closed-loop

walking controller of the Valkyrie humanoid robot.

In our evaluation we refer to three different estimators:

- EF: ElasticFusion running on stereo data and with loop closures enabled (12 Hz).

- KI: The open-loop kinematic-inertial state estimator which is also used in the

control loop (250 Hz).

- PEF: Proprioceptive ElasticFusion - our proposed system which fuses the visual

and kinematic-inertial systems and with the default ElasticFusion loop closure

capabilities enabled (12 Hz).

3.4.1 Quantitative Results (Trajectory Evaluation)

We evaluate the performance of these estimators by comparing trajectories against

the Vicon ground truth measurements. Note that although the Vicon markers are

mounted on the pelvis, the visual SLAM system estimates the pose of the camera

in the head. Therefore, we use forward kinematics to transform all motion capture

and kinematic-inertial pose estimates to the camera reference frame and evaluate all

trajectories with respect to this frame.

For this evaluation, we use the established metrics proposed by Sturm et al. [26],

namely Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). In addition, we

report the Drift per Distance Travelled (DDT). These metrics are described in detail in

Section 2.3. We compute these metrics over all timestamps and report the root mean

square error (RMSE) for each trajectory.

Regarding DDT, we compute the total distance travelled by integrating the length

of the path travelled by the camera for each time sample. As the typical robot walking

gait involves oscillatory motion (left-right-left), this can overstate what is considered

as ‘distance travelled’.
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Figure 3.7: Overhead view of the camera trajectory as estimated by our ground truth Vicon
system (green) and ElasticFusion using stereo data only (magenta) for Log1. The direction of
motion is indicated by the black line and the blue frames indicate the point of view of the robot
(facing outside).

3.4.1.1 Stereo ElasticFusion

We first explored the performance of ElasticFusion (EF) on stereo data preprocessed

as described in Section 3.2.3. The robot was commanded to walk clockwise up to the

point of completing a loop in Log1 and Figure 3.7 shows the trajectory as estimated

by ElasticFusion. Despite vibrations due to foot impacts and some sharp rotations,

the estimated motion closely matches the Vicon trajectory — in large part because the

environment contained structure in all directions. This indicates that stereo-only EF

can achieve acceptable tracking performance in feature rich environments assuming

smooth camera motion.

Nevertheless, even in scenarios where visual SLAM can operate successfully, there

are still benefits to performing sensor fusion. In this case, this is motivated by the high

stability and temporal smoothness of estimates provided by the kinematic-inertial

system. Figure 3.8 shows that the stability of PEF pose estimates are indeed higher

when compared to EF. When tracking against the model, EF estimates display high

frequency jitter because of independent per-frame geometric/photometric optimisa-
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Figure 3.8: Z-component of the robot’s pose for a sequence in Log1 when it is stationary:
fusion of kinematic-inertial within visual tracking (PEF) results in more stable pose estimate
than using only vision (EF).

tions. Note that the vision system could be simply turned off while the robot is stand-

ing, nevertheless this smoothness would still be observable when moving.

3.4.1.2 Evaluation of Accuracy

We analyse the drift characteristics of all estimators for the two sequences and report

the DDT in Table 3.2. As EF uses frame-to-model tracking, we evaluate the drift of this

system by limiting the size of the local tracking model to the previous 200 frames only.

Log1 Log2
DDT EF KI PEF EF KI PEF

XYZ (cm/m) 1.06 0.72 0.61 18.55* 0.78 0.54
XY (cm/m) 1.00 0.54 0.53 17.06* 0.56 0.45
Z (cm/m) 0.35 0.48 0.30 7.28* 0.54 0.29

Yaw (deg/m) 0.33 0.53 0.16 6.51* 0.38 0.19

Table 3.2: Drift per distance travelled averaged over 2 m to 10 m trajectory intervals. The
proposed fusion approach, PEF, outperforms the individual sub-systems. Note * indicates
algorithm failure.

For the kinematic-inertial state estimator, the main directions of drift are in the

3D linear axes and yaw rotation due to estimator unobservability in those directions.

While roll and pitch are globally observable through the accelerometer, yaw is com-

puted by integrating the rate gyroscope estimates and drifts over time. Linear Z-axis

drift occurs due to small errors made whenever contact between the robot’s feet and

the ground is established.

PEF achieves the best performance for each portion of the state with an average
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translational drift of 0.54 cm/m for Log2. The baseline EF system is unable to operate

on this sequence and fails.

A more detailed view of the rate of translational drift as a function of the path

length for Log1 is shown in Figure 3.9. In this case, the relative pose error for PEF

grows at the slowest rate.
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Figure 3.9: Translational RPE (cm) for increasing path lengths (m) for Log1, showing PEF
achieving the smallest drift rate.

3.4.1.3 Evaluation of Robustness

Within this section we report the performance of our proposed approach on the chal-

lenging sequences within Log2 which cause the baseline EF system to fail.

Figure 3.10 shows examples of such challenges and the successful operation of PEF

in these situations. For each example, the performance of PEF was as follows:

• Lack of features in the camera view (Figure 3.10a): the lack of suitable depth

causes the kinematic-inertial tracking to dominate Equation 3.4.

• Motion blur (Figure 3.10b): while depth can be estimated in this case, the set of

inliers is very small, meaning again kinematic-inertial tracking is preferred.

• Changes in illumination (Figure 3.10c): behaviour is similar to previous case.

• Continuous dynamics in the scene (Figure 3.10d): in this situation, our approach

exploits the 3D fusion strategy of ElasticFusion, which only adds new objects in

the map if these are observed repeatedly. Note that changes to the map are not

supported.

69



The absolute trajectory error is shown in Table 3.3: our proposed system achieves

low error for both sequences and successfully tracks the pose of the camera through

all mentioned challenges.

Trans. ATE RMSE (m)
Logs EF PEF
Log1 0.048 0.020
Log2 FAIL 0.025

Table 3.3: Absolute Trajectory Error for the two collected sequences. ElasticFusion (EF) fails
on Log2 because of these challenges.

3.4.2 Qualitative Results (Comparison of Stereo map against LIDAR map)

In Figure 3.11 (top) we present a 3D model showing the reconstruction obtained dur-

ing Log2. We evaluate its accuracy against a model created using the spinning Hokuyo

LIDAR sensor contained within the MultiSense SL. The accuracy of the LIDAR sensor

is +/-10 mm within the range of 0.1 m - 10 m, which makes it appropriate for coarsely

evaluating the stereo reconstruction. We manually align several LIDAR point clouds

from Log2 to create a 3D model of the test environment. Due to imperfections in how

the LIDAR map is produced, we point out that these results are indicative of recon-

struction quality rather than fully quantitative.

For each point in the visual model, we compute the distance to the closest LIDAR

point as a per-point error. A heat-map of this error is shown in Figure 3.11. The scale

and structure of the stereo model closely matches the LIDAR model. The stereo model

is aligned with gravity which is essential for it to be used in practical applications. This

occurs due to the fact that the initial camera pose within the visual SLAM system is

set to the initial pose of the kinematic-inertial estimate, whose roll and pitch estimates

are computed from the accelerometer.

Figure 3.12 shows the distribution of per-point errors, with a median error value

of 0.02 m. We conclude the reconstruction is of sufficient accuracy for tasks such as

collision free motion planning.
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Figure 3.10: Top: Examples of colour-disparity image pairs during challenging sequences.
Bottom: Corresponding frame-to-frame translational RPE for PEF and the baseline EF. In each
case EF fails while PEF works well.
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Figure 3.11: Top: Stereo 3D reconstruction of a manipulation scene covering a 12 m2 area.
Bottom: Heat map of stereo per-point error computed against the LIDAR point cloud.
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Figure 3.12: Distribution of stereo point errors.
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3.4.3 Closed Loop Integration

In our final experiment we demonstrate the integration of PEF within the closed loop

walking controller of the Valkyrie robot. We encourage the reader to watch the video

of the experiment in Appendix A.3.1 for a better understanding.

The environment used for this experiment is depicted in Figure 3.5. It consists of

two tables with objects on them and corresponding goal marks on the floor (white

tape). The robot walks to each table in turn to reach these goals.

The kinematic-inertial state estimator (KI) represents the direct input to the walk-

ing control system of the robot. To prevent the state estimator from drifting, we trans-

mit pose corrections on a regular interval from our method (PEF) which enables the

robot to successfully reach the targets each time.

3.5 Discussion

In this chapter we proposed an approach for visual SLAM applied to the humanoid

robot Valkyrie. We aimed for an approach that does not require control of how the

camera moved.

This meant that we had to handle a number of challenges. For example, the robot

could point its camera towards areas with few visual features or can perform fast

motion, inducing motion blur and strong view changes within the images. We also

analysed the problems posed by strong changes in illumination or the presence of

moving objects in the image. These can affect the pose tracking component of visual

SLAM systems, causing them to fail, and in turn lead to corrupted reconstructions of

the scene.

To address these challenges, we extended the dense visual SLAM method Elastic-

Fusion to integrate information from our high-rate low-drift kinematic-inertial state

estimator. We use the state estimator to provide a camera motion prior which is inte-

grated within the pose tracking component of ElasticFusion to handle the described

degenerate cases. As many previous approaches made use of sparse point-based

SLAM methods, our direct approach can produce a semi-dense reconstruction which

can also be interpreted visually and used for tasks such as collision-free motion plan-

ning.

We evaluated our approach through a series of experiments in our laboratory. Our
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fusion method achieves lower drift rates than the tracking of the kinematic-inertial

state estimator and ElasticFusion’s visual tracking individually but more importantly

it is robust to sequences containing the aforementioned visual challenges. We pro-

vided a qualitative evaluation of our stereo-produced reconstruction against LIDAR

and described an online integration experiment of our method within the walking

controller of Valkyrie.

3.5.1 Limitations and Future Work

The system could be further improved by integrating global roll and pitch informa-

tion from the accelerometer to prevent drift along these dimensions. Laidlow et al. [69]

implement this by constraining the graph deformation procedure to deform the map

according to gravity. Alternatively, Puri et al. [103] embed global roll and pitch infor-

mation within each surfel to enable accurate reconstructions of planar floors.

Also, we did not explore the performance of our fused system in cases where the

proprioceptive state estimator might fail. For example, the state estimator reports ex-

cessively high velocity values when foot slippages occur, in turn leading to an incor-

rect kinematic-inertial motion prior. The influence of an incorrect motion prior within

our fusion system was not investigated due to practical limitations, as it is difficult to

induce controlled slippage which would not cause the robot to fall.

In future work, this problem could be addressed on a simpler robotic platform.

Wheeled vehicles are also equipped with encoders and IMUs which can be used to

compute proprioceptive odometry and provide motion priors. Such vehicles also en-

counter slippage, but are less prone to damage in these situations, particularly those

with more stable four-wheel design.

Finally, our method is only implicitly robust to dynamics in the scene. We exploit

the fact that dynamic objects are assigned low confidence and do not become a part of

the model as long as they are continuously moving.

In the next chapters, we describe approaches taken to explicitly handle the pres-

ence of moving objects in the environment and support changes to the map.
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Chapter 4

Joint Visual Odometry and Motion

Segmentation for SLAM in

Dynamic Environments

In this chapter we explore approaches to improve robustness of visual SLAM systems

in dynamic environments. In the previous chapter we leveraged motion priors from

other sensors and relied on simple outlier filtering to handle the presence of moving

objects. Here we explore a vision-based approach to explicitly detect moving objects

and remove them from our camera pose estimation process.

Robust operation in the presence of dynamic elements is an open problem in visual

SLAM. For example, many visual odometry methods are based on the assumption

that camera motion is responsible for the change between two consecutive images.

Dynamic elements violate this assumption and can cause failures in pose tracking. In

addition, if not actively detected and segmented, dynamic objects can be fused into

the map which can lead to irreversible corruptions.

In this chapter we propose a method for robust dense RGB-D SLAM in dynamic

environments which detects moving objects and reconstructs the background struc-

ture in real-time.

The novelty of our approach is a new formulation that simultaneously estimates

the camera motion as well as a probabilistic static/dynamic segmentation of the cur-

rent RGB-D image pair. This segmentation is then used to weight the dense RGB-D

fusion to estimate a 3D model of only the static parts of the environment.
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We demonstrate that by leveraging the 3D model for frame-to-model alignment,

as well as static/dynamic segmentation, camera motion estimation has reduced over-

all drift — as well as being more robust to the presence of dynamics in the scene. We

compare our approach to related state-of-the-art methods using both static and dy-

namic sequences and report that the proposed method achieves similar performance

in static environments and improved accuracy and robustness in dynamic scenes.

4.1 Visual SLAM in Dynamic Environments

Improving the performance of SLAM in dynamic environments is an important goal

particularly for mobile robots. It is rarely the case that robots operate in strictly static

environments. Such a requirement would significantly limit the extent to which they

could be successfully deployed. For example, co-bots such as the Rethink Baxter carry

out assembly tasks among moving equipment and infrastructure. Similarly, mobile

service robots accomplish their tasks in environments which are inhabited by people.

Efforts have been made to increase the robustness of visual SLAM in dynamic

scenes. Among current approaches, we identify two main strategies:

• Outlier Filtering - these methods consider moving objects as outliers and filter

them out using hard-coded thresholding techniques, semantic segmentation or

robust cost functions.

• Spatial or Temporal Modelling - these methods actively detect moving objects

and reconstruct and track them in time.

We review works implementing both approaches in the next section.

4.1.1 Outlier Filtering

Implicit Handling of Dynamic Elements It is common to use a robust cost function

within visual odometry which penalises the contribution of high-residual points and

implicitly increases the robustness of pose estimation to un-modelled effects. Gutier-

rez et al. [82] compare different robust functions focusing on the quality of the result-

ing pose estimate, while Kerl et al. [60][104] demonstrate robustness to the presence

of small moving objects in the scene by using a robust penalty.
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These solutions however are insufficient and fail when moving objects occupy a

significant portion of the image.

Reconstruction-focused approaches, such as ElasticFusion [54] as well as the method

of Keller et al. [53], require points be repeatedly observed through consecutive frames

before becoming integrated within the 3D model.

In these methods dynamic elements are not explicitly detected and handled, re-

sulting in robustness which is limited to small motions of the objects in the scene.

Outlier Rejection Strategies A common strategy is to treat dynamically moving ob-

jects as noise which must be detected and filtered out.

For Keller et al. [53], input points with no close model correspondence are used to

seed a region-growing procedure to segment the current image into static and dy-

namic parts. Subsequently, model points which are matched with dynamic input

points are removed from the reconstruction. This approach can only be demonstrated

once a confident reconstruction of the scene is in place.

In DTAM [105], which is a monocular dense mapping system, the authors dis-

card pixels with a photometric error higher than a specific threshold. For ORB-SLAM

[106, 24] the authors enforce an effective survival-of-the-fittest strategy which judges

the validity of keyframes and the points used for pose tracking. By being generous

when spawning new keyframes and points within the system and by enforcing highly

conservative culling strategies, they demonstrate impressive robustness and versatil-

ity.

Nevertheless, within these approaches, no spatial or temporal coherence is en-

forced among the detected dynamic points between consecutive frames.

4.1.2 Methods Enforcing Spatial or Temporal Coherence

Jaimez et al. [79] introduce a joint visual odometry and scene flow estimation method.

Similarly, BaMVO [107] is an odometry method which reconstructs the environment

over the previous 4 frames by temporal propagation. As both are frame-to-frame

methods, they incur unbounded drift in the pose estimate over time and struggle

when dynamics occupy a majority of the image.

Rünz et al. proposed Co-Fusion [108], a method to reconstruct and track each mov-

ing object with a separate 3D model, being one of the first real-time methods to per-
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form dense tracking and fusion of multiple objects so as to explicitly handle dynam-

ics and enforce both spatial and temporal coherence. Moving objects are detected

through motion segmentation computed using ICP or semantic segmentation using

the method of Pinheiro et al. [109]. This technique is extended in MaskFusion [110],

where moving objects are detected using Mask-RCNN [111]. The limitation of these

approaches is that camera pose estimation is computed through dense visual odome-

try which could fail when the moving objects occupy a large portion of the image.

Finally, methods such as DynamicFusion [112] and VolumeDeform [113] are im-

pressive techniques which are specifically targeted towards dynamic environments.

They estimate a non-rigid 3D model of the scene and track its motion using scene

flow. However, they require that objects move smoothly and slowly to successfully

track them.

By coupling visual odometry and motion segmentation, our approach achieves in-

creased robustness in dynamic scenes compared with state-of-the-art techniques. While

effective detection and segmentation of moving objects typically require temporal

feedback or a multi-frame formulation, we demonstrate that background 3D recon-

struction is an efficient way to propagate this temporal information without incurring

significant run-time costs. Also, the resulting map is more meaningful in the sense

that it only contains structural elements and the static objects present in the scene.

4.2 Methodology

4.2.1 System Overview

In this section we provide a general description of our proposed SLAM system and

Figure 4.1 illustrates its main components. Each of these components will be described

in detail in the following sections.

The input to our system is a stream of registered RGB-D images. An RGB-D pair

is represented as a colour image CD : Ω → R3 and a depth image ZD : Ω → R, where

Ω ⊂ N2 is the image plane. We also compute an intensity image ID : Ω → R from CD

for use in the algorithm.

To achieve real-time operation, we segment every incoming pair (ID, ZD) into K

geometric clusters and we solve the static/dynamic segmentation problem cluster-
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Figure 4.1: System architecture: the process starts by receiving a new RGB-D image (CD, ZD)
and grouping its pixels into geometric clustersC. A prediction (CM , ZM ) is rendered from the
model and the last pose estimate T and used for joint alignment and background segmenta-
tion. Both results are then exploited for weighted fusion of the static clusters of CD, ZD with
the map.

wise as opposed to pixel-wise. The clustersC = {Ci, i = 1, ...,K} are computed using

K-Means on the 3D coordinates of the scene points (as described in [79]). This is an ac-

ceptable approximation because we are not interested in estimating accurate motions

of moving objects, but are rather focused on building a conservative reconstruction of

the static structures in the scene.

Then, an artificial image pair (IM , ZM ) is rendered by placing a virtual camera

at the previous camera pose estimate within the current map of the static scene con-

structed up to that point.

Given the current images (ID, ZD), the cluster segmentations and the last predic-

tion (IM , ZM ), our novel step is to jointly obtain the camera motion ξ ∈ se(3) and a

motion-based segmentation of the scene between the two time instances. Each cluster

i is assigned a score bi ∈ [0, 1] which corresponds to the level of dynamism:

• b ' 1 corresponds to static clusters;

• b ' 0 to moving clusters;

• 0 < b < 1 to intermediate levels of uncertainty.

After the solution to the joint estimation problem is calculated, the clusters and

scores are used to compute a per-pixel segmentation image BD, which, together with
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the current colour and depth images (CD, ZD), is used for weighted 3D fusion.

4.2.2 Formulation of Joint Visual Odometry and Motion Segmentation

To estimate these two joint properties, we propose a new formulation based on the

minimisation of two energy terms:

min
ξ,b
{D(ξ, b) + S(b)} s.t. bi ∈ [0, 1] ∀i, (4.1)

where b represents the full set of scores over all clusters.

The term D(ξ, b) encodes direct image alignment by enforcing photometric and

geometric consistency only for pixels that belong to static clusters.

The second term S(b) complements D(ξ, b) by forcing clusters to be segmented as

dynamic when their residuals are very high, and vice versa. It also includes spatial

regularisation to encourage a smooth segmentation of the clusters, and exploits prior

geometric knowledge to help the optimisation converge to the correct minimum.

Next, we present the formulation of D(ξ, b) and S(b) and describe how the overall

minimisation problem is tackled.

4.2.2.1 Camera Motion Estimation

For every new RGB-D pair, the incremental motion of the camera is computed by min-

imising the geometric and photometric reprojection errors between the current RGB-D

image and the last prediction obtained from the map. The respective reprojection er-

rors (or residuals) are defined as:

rpZ(ξ) = ZM (W(xp, ξ))−
∣∣exp(ξ)π−1(xp, ZD(xp))

∣∣
z

(4.2)

rpI (ξ) = IM (W(xp, ξ))− ID(xp) , (4.3)

where xp ∈ Ω represents the coordinates of a given pixel p and | • |z denotes the

z-coordinate of a 3D point. The function π : R3 → R2 projects 3D points onto the

image plane according to the camera’s pinhole model. exp(ξ) ∈ SE(3) computes the

homogeneous transformation associated to the twist ξ. The warping function is given

by:

W(xp, ξ) = π(exp(ξ)π−1(xp, ZD(xp))) . (4.4)
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These residual formulations are similar to those in the visual odometry component

of ElasticFusion discussed in Section 2.2.3.1, however there are some notable differ-

ences:

• ElasticFusion aligns depth images using ICP in a point-to-plane formulation. We

instead implement direct image alignment over depth images, which is a more

efficient formulation that does not require computing normals.

• ElasticFusion filters outlier correspondences using hard-coded distance thresh-

olds. Instead we follow the approaches of Kerl et al. [60] and Jaimez et al. [64]

who use M-estimators to reduce the influence of high residuals which could

originate from outlier correspondences. We make use of the Cauchy robust

penalty, described in Section 2.1.1.3 and visualised in Figure 4.2.

Our direct image alignment formulation takes the form:

D(ξ, b) =

N∑
p=1

bi(p)

[
F (wpZr

p
Z(ξ)) + F (αIw

p
Ir
p
I (ξ))

]
, (4.5)

where N is the overall number of pixels and bi(p) refers to the score of the cluster i

containing p. We weight the residuals using bi(p) to ensure that those associated to

static parts of the scene have a high contribution.

The function F (r) is the Cauchy robust penalty:

F (r) =
c2

2
log

(
1 +

(r
c

)2
)
, (4.6)

where c represents the inflection point of F (r) and controls how robustly residuals are

minimised.

As the geometric and intensity terms compute errors with different units, the pa-

rameter αI re-scales the intensity term so that it has a comparable effect in scale as the

geometric term.

Lastly, we follow the approach of Jaimez et al. [79] and implement weights wZ and

wI which penalise the photometric and geometric residuals according to the noise

of the measurements (kZ and kI ) and the occlusions and discontinuities observed

through high spatial or temporal gradients:
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Figure 4.2: Cauchy robust penalty and the different regions defined to distinguish between
the clusters that are likely to be static (b ↑↑) or dynamic (b ↓↓).

wZ =
1

kZ + |∇xZD|+ |ZD − ZM |
, (4.7)

wI =
1

kI + |∇xID|+ |ID − IM |
. (4.8)

In Equations 4.7 and 4.8, the parameters kZ and kI control the relative importance

of the noise against the derivatives.

4.2.2.2 Static / Dynamic Segmentation

The objective of the second term in 4.1 is to classify clusters with high average resid-

uals as dynamic and those with low residuals as static. The underlying idea is that

clusters with high residuals are the ones whose relative motions with respect to the

camera do not coincide with the camera motion itself. In order to implement this

concept we must quantify what a ‘high residual’ is.

Our assumption is that large residuals correspond to those significantly higher

than the parameter c, i.e. those lying on the flatter sides of the function F (r) (see Fig.

4.2). The following term sets this threshold within the overall minimisation problem:

SD(b) = 2

K∑
i=1

(1− bi)KiF (ĉ) . (4.9)

The total number of pixels in each cluster i is represented by Ki, and ĉ > c is a heuris-

tically selected threshold which defines the frontier between low and high residuals.
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The combination of this term with Eq. 4.5 encourages bi to be as low as possible (to

a minimum of 0) when the average residual of cluster i is higher than ĉ; otherwise it

favours high values of bi (to a maximum of 1).

Furthermore, we include a regularisation term that encourages contiguous clusters

to have a similar score:

SR(b) = λR

K∑
i=1

K∑
j=i+1

Gij (bi − bj)2 . (4.10)

In Eq. 4.10, Gij is a connectivity map: it is equal to 1 when clusters i and j are con-

tiguous in space and it is 0 otherwise. Contiguity is established by first projecting the

clusters onto the image plane and then checking, for each pair of clusters that share

a border on the image plane, if their corresponding 3D points along that border are

sufficiently close. The parameter λR weights SR(b) with respect to the other terms.

Lastly, we add a geometric constraint that exploits the fact that moving objects do

not appear in our map and therefore the depth differences between ZD and ZM will

be high for moving clusters. This constraint is expressed as a segmentation prior:

SP (b) = λP

K∑
i=1

(
bi − bPi

)2
(4.11)

with

bPi = 1− kp
∑Ki

k=1|ZD(xk)− ZM (xk)|
Ki

, (4.12)

where kp controls how high these depth differences should be to enforce a dynamic

scoring and λP is the parameter that weights this constraint within the overall optimi-

sation. Admittedly, Eq. 4.11 has some degree of redundancy with Eq. 4.5, however,

Eq. 4.12 computes depth differences directly without any pre-weighting as do Equa-

tions 4.7 and 4.8. This provides additional evidence of the presence of moving objects.

The three terms described above only depend on b. For the sake of clarity we

group them into the combined term S(b) which is used in Equation 4.1:

S(b) = SD(b) + SR(b) + SP (b) . (4.13)
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4.2.2.3 Cost Function Overview and Intuition

In this section we provide an overview of the whole cost function with additional

explanation regarding how the per-cluster segmentation is solved for.

For a cluster Ci, the cost function will take the form:

min
ξ,b


bi

Ki∑
p=1

[
F (wpZr

p
Z(ξ)) + F (αIw

p
Ir
p
I (ξ))

]
︸ ︷︷ ︸

D
Image alignment

+ (1− bi)2KiF (ĉ)︸ ︷︷ ︸
SD

Segmentation

+Sr(bi) + Sp(bi)︸ ︷︷ ︸
Regularisation


,

(4.14)

where Ki is the cardinality of cluster Ci. The term D contains all per-pixel residuals

while the term SD simulates a high residual for every pixel p in cluster Ci.

When minimising this cost function with respect to the segmentation, bi will con-

verge towards static (i.e. bi → 1) if D < SD, which means the direct alignment residu-

als are smaller than those set through the threshold value ĉ. However, if the residuals

of the current cluster are high (i.e.D > SD), the segmentation bi will converge towards

dynamic (i.e. bi → 0). Our assumption is that high residual values originate from dy-

namic objects which move independently from the camera motion.

4.2.2.4 Solver Description

The solver is listed in Algorithm 3 and explained next.

Equation 4.1 involves direct image alignment and to solve it we use a similar

coarse-to-fine registration strategy as described in Section 2.2.3.1. Namely, we build a

pyramid of images and align these from the coarsest to the finest level.

At each level, the termD(ξ, b) is nonlinear and non-convex with respect to ξ. How-

ever, the combined optimisation problem is convex and can be solved analytically

with respect to b. This motivates us to estimate ξ and b separately, using iteratively

re-weighted least squares (IRLS) to minimise Eq. 4.1 with respect to the camera mo-

tion ξ and then obtain the close-form solution for b after every iteration of the IRLS

algorithm.

The segmentation computed at every level of the pyramid is used to initialise the

solver at the next deeper level, thus allowing the algorithm to converge to the right

segmentation at the different levels.
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Decoupling ξ from b within the solver allows us to compute the solution for each

efficiently, while the tight alternation of those two steps leads to good rate of conver-

gence. In future work, we intend to investigate if simultaneous optimisation of both

quantities would lead to a faster rate of convergence.

Algorithm 3: Frame-to-model alignment and motion segmentation
Input: ID, ZD, IM , ZM
compute image pyramids for ID, ZD, IM , ZM ;
initialise ξ = 06×1;
initialise b = 0K×1;
foreach level of the pyramid do

foreach iteration do
warp ID towards IM given current ξ;
warp ZD towards ZM given current ξ;
compute segmentation prior bP (4.12);
if b not initialised then

b = bP

compute weights wI , wZ (4.7, 4.8);
compute visual odometry residuals rI and rZ (4.3 ,4.2);
foreach IRLS iteration do

compute Cauchy weights WI ,WZ using segmentation b;
solve for ∆ξ (4.5);

(J>I WIJI + J>ZWZJZ)∆ξ = −(J>I WZrI + J>ZWZrZ);
update residuals rI and rZ ;
solve for segmentation b (4.13);

update ξ;
ξ = log(exp(ξ) exp(∆ξ));

Our main contribution in this chapter regards computing the segmentation, so we

describe its analytical solution next.

Solving for Static/Dynamic Segmentation For a particular cluster Ci, the error term

Eq. 4.1 with respect to bi takes the expanded form:

E(bi) = D(ξ, bi) + SD(bi) + SP (bi) + SR(bi) =

= bi
∑
p∈Ci

[
F (wpZr

p
Z(ξ)) + F (αIw

p
Ir
p
I (ξ))

]
+ 2(1− bi)KiF (ĉ)

+ λP (bi − bPi )2

+ λR

K∑
j=i+1

Gij (bi − bj)2 .

(4.15)
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where ξ is the velocity estimated through IRLS and pixels p are all pixels in cluster Ci.

To solve for bi, we take the derivative of E(bi) and set this to zero:

∂E

∂bi
=
∑
p∈Ci

[
F (wpZr

p
Z(ξ))+F (αIw

p
Ir
p
I (ξ))

]
−2KiF (ĉ)+2λP (bi−bPi )+2λR

K∑
j=i+1

Gij (bi − bj) = 0 .

(4.16)

From Eq. 4.16 we formulate constraints for bi depending on whether its value is cou-

pled with those of neighbouring clusters:

2λP bi +
∑
p∈Ci

[
F (wpZr

p
Z(ξ)) + F (αIw

p
Ir
p
I (ξ))

]
− 2KiF (ĉ)− 2λP b

P
i︸ ︷︷ ︸

rbi

= 0 , (4.17)

2λR

K∑
j=i+1

Gij (bi − bj) = 0 . (4.18)

To solve for the full segmentation b, we stack these constraints for all clusters in a

system of equations of the form:

K



n





K︷ ︸︸ ︷
2λP 0 · · · 0 0

0 2λP · · · 0 0
...

...
...

...
...

0 0 · · · 2λP 0

0 0 · · · 0 2λP

2λR −2λR · · · 0 0

0 2λR · · · −2λR 0
...

...
...

...
...

0 0 · · · 2λR −2λR



×



b1

b2
...

bK−1

bK


=



−rb1
−rb2

...

−rbK−1

−rbK
0

0
...

0




K


n

.

Where K is the number of clusters and n is the number of connections, i.e. the

number of neighbouring clusters as described by the connectivity map G. The first

K terms corresponds to all equations of the form of Eq. 4.17 for all clusters, while the

following n terms represent the neighbourhood regularisation equations of the form of

Eq. 4.18 for all clusters. We solve this system of equations using the Sparse Cholesky

decomposition (from the C++ Eigen library 1) to yield b.

1http://eigen.tuxfamily.org
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4.2.3 Surfel-based 3D Reconstruction

The 3D model is represented as an unordered list of surfels. A surfel is a 3D disk, with

associated position and normal p,n ∈ R3, colour c ∈ N3, radius r ∈ R, initialisation

timestamp t0, timestamp of latest update t and counter h ∈ N representing the number

of times the surfel has been updated. We propose an additional characteristic for each

surfel which we term viability, w ∈ [0, 1], with w → 1 meaning a surfel has been

repeatedly fused with points segmented as static.

At every timestep, our system takes as input the last RGB-D pair (CD, ZD) as well

as the per-pixel segmentation image BD of each point belonging to the background.

We maintain a fused coloured model for visualisation purposes but convert to inten-

sity when rendering an image prediction.

We follow the original approach of ElasticFusion [54, 53] for pre-processing and

data association of new points to existing surfels for 3D fusion. The difference is that

we propose a strategy which judges the viability of each surfel in order to enable

the model to remove those surfels that are matched with dynamic input points. Our

fusion approach is listed in Algorithm 4 and explained below.

4.2.3.1 Surfel Viability

A surfel i is considered viable if it is repeatedly observed (h is large) and matched with

static input points (Bi
D > 0.5). These conditions ensure that a viable surfel is neither

spurious nor dynamic. Only in these conditions do we impose that w → 1.

To achieve this, each new surfel is introduced into the model with low viability

w → 0. On subsequent observations, w is updated through a running sum of the

log-odds probabilities of input points which are considered correspondences.

This strategy is suitable for our application as viability only increases through re-

peated matches with static points (Bi
D > 0.5) and automatically decreases with dy-

namic matches (Bi
D < 0.5):

sign
(

ln

(
w

1− w

))
=


−1 if w < 0.5

0 if w = 0.5

1 otherwise

. (4.19)
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4.2.3.2 Fusion

During fusion, a weighted average scheme is used to update a surfel’s position, colour

and normal as described in ElasticFusion [54]. In addition to BD, we employ two

additional weights to represent the quality of each input point:

1. For each surfel i with pixel coordinates xi ∈ Ω, a Gaussian weight γiD ∈ [0, 1]

biasing in favour of pixels close to the image centre xc [53]:

γiD = exp

(
−||x

i − xc||
2σ2

γ ||xc||

)
. (4.20)

2. A velocity weight vD ∈ [0, 1] biasing in favour of surfels seen during slow mo-

tion:

vD = max

(
1− 1−max(||ξ||, 0.15)

0.15
, 0.5

)
. (4.21)

While the first term weights surfels based on the assumption that measurements

closer to the camera centre are more accurate, the second penalises the influence of

surfels recorded during fast motion which would introduce blur within the model.

4.2.3.3 Surfels Removal

Finally, a cleaning stage removes surfels for which w < 0.5 for more than 10 consecu-

tive frames. We also perform free-space violation checks to remove points remaining

in front of viable surfels. This ensures that dynamic objects and noisy measurements

are removed from the map and a clean representation of the environment structure is

maintained in the long term.
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Algorithm 4: Weighted Surfel Fusion
Input: CD, ZD, BD
sD ← generate input surfels();
foreach siD do

sjM ← search for model correspondence();
if sjM found then

compute weights(γiD, vD);
//Compute input viability

wiD ← min(Bi
D, γ

i
D, v

i
D);

//Truncate to avoid early saturation

wjM ← max(0.01,min(0.99, wjM ));
wiD ← max(0.01,min(0.53, wiD));

//Update position, colour and normal through weighted average

scheme

kjM ←
hjMw

j
Mk

j
M + wiDk

i
D

hjMw
j
M + wiD

;

∀k ∈ {p, c,n};

//Update viability by sum of log-odds

l← ln

(
wjM

1− wjM

)
+ ln

(
wiD

1− wiD

)
;

wjM ← 1− 1

1 + exp(l)
;

//Update history counter

hjM ← hjM + 1;
else

//Add new surfels

wiD ← α where α→ 0;
hiD ← 1;
add surfel to model();
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4.2.4 Implementation Details

4.2.4.1 Initialisation

As we rely on a map for both odometry and static/dynamic segmentation of the scene,

we require an initialisation stream to generate the first reliable map. The initial frames

(first 1-2 seconds) observed by the system should contain no more than 20-30% of

moving elements in order to allow for a successful initialisation of the map.

Our current formulation starts by aligning the first two RGB-D pairs read from the

camera following the same procedure described in Section 4.2.2. By solving Eq. 4.1

we also obtain a segmentation of the last image (BD) that we use to generate the first

instance of the map. After this first step the algorithm always aligns the incoming

RGB-D pairs with the last prediction obtained from the map.

4.2.4.2 Analysing and processing residuals

Among the parameters presented in Section 4.2.2, the most important ones are c and ĉ

(see Fig. 4.2). The parameter c is commonly chosen as a linear function of the median

or the median absolute deviation (MAD) of the residuals [82, 114]. Since this metric

is computationally expensive, we sacrifice accuracy and compute the mean (r̄) of the

residuals instead:

r̄ =
1

2N

N∑
p=1

|wpZr
p
Z(ξ)|+ |αIwpIr

p
I (ξ)| . (4.22)

Note that r̄ actually represents the mean of the pre-weighted residuals. This compu-

tation is performed before each iteration of the IRLS solver described in Section 4.2.2.4

(for the first iteration ξ is assumed to be null). Afterwards, to ensure robust estimation,

we set c = 0.5 r̄.

For ĉ we choose a threshold above which points are regarded dynamic, consider-

ing that false positives (static regions segmented as dynamic) are preferable to false

negatives (dynamics are segmented as static). The lower the value of ĉ, the more ag-

gressively are dynamics segmented. During initialisation this value is set lower to

ensure that the initial map contains only static parts:

ĉ =


max(rmin, r̄) During initialisation

1.5 max(rmin, r̄) Otherwise
. (4.23)
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The variable rmin sets the minimum residual value below which clusters should al-

ways be segmented as static. When images are perfectly aligned the mean residual

r̄ is very low and the threshold 1.5 r̄ would also be very low, which would lead to

having static clusters segmented as being dynamic — irrespective of how precise the

alignment is. The introduction of rmin solves this problem.

The values of the other parameters are as follows:

• K, the total number of clusters, is 24.

• αI , the weighting applied to the photometric term (Eq. 4.5), is 0.15.

• The weights of the regularisation terms SR (Eq. 4.10) and SP (Eq. 4.11), namely

λR and λP , are set to 0.35 and 0.5 respectively.

• The pre-weighting constants, kI (Eq. 4.8) and kZ (Eq. 4.7) are set to 0.1 and 10−4

respectively.

4.3 Evaluation

We evaluate our approach in static and dynamic environments. First, results are pre-

sented for several sequences of the Freiburg dataset [26], which has ground truth cam-

era trajectory from a motion capture system and allows us to measure relative and

absolute drift. This dataset contains only a small number of sequences with high dy-

namics and, for that reason, we recorded by ourselves additional sequences with a

hand-held camera to provide a more general evaluation with varied scenes.

We compare the accuracy of our method, StaticFusion (SF), against related state-

of-the art approaches:

1. The joint visual odometry and scene flow of Jaimez et al. [79] (VO-SF). As an odom-

etry method designed for dynamic scenes, a comparison is useful to investigate the

benefits of reconstructing a 3D model of the static scene.

2. ElasticFusion [54] (EF) in order to investigate the performance of a state-of-the-art

method designed for static environments within dynamic scenes.

3. Co-Fusion [108] (CF), as it is a state-of-the-art approach for tracking and recon-

structing multiple moving objects.
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4. The background model-based visual odometry of Kim et al. [107] (BaMVO), which

is conceptually related to our approach but uses a multi-frame strategy instead of

frame-to-model alignment. Since we were unable to replicate the published results

using the open-source release of this method, we only include numerical results for

the sequences evaluated in the original publication.

The experiments were performed on a workstation with an Intel(R) Core(TM) i7-

3770 CPU at 3.40GHz and a GeForce GTX 1070 GPU using the Ubuntu 16.04 operating

system. We used registered RGB-D images and maintained default parameters for the

methods we compare against.

Regarding the image resolution, to ensure real-time operation we use QVGA (320

× 240) and keep the default resolution of the other methods included in the compari-

son (VO-SF, BaMVO also use QVGA, the remaining ones work with VGA).

Because we are mainly focused on evaluating the robustness of the visual odom-

etry component of StaticFusion, loop closure capabilities are disabled during these

experiments.

4.3.1 Quantitative Evaluation

Regarding the accuracy of pose estimation, evaluation is performed through the met-

rics proposed by Sturm et al. [26]:

• Translational and rotational relative pose error (RPE) to measure the average

local drift per second.

• Translational absolute trajectory error (ATE) to measure the global quality of the

trajectory.

For completeness, sequences recorded in static, low dynamic and high dynamic

scenes are included within this evaluation.

4.3.1.1 Trajectory Evaluation and Comparison Against Related State-of-the-Art

Results are listed in Tables 4.1, 4.2 for RPE and in Table 4.3 for ATE.

It can be seen that StaticFusion’s performance in static environments is comparable

to that of ElasticFusion for both ATE and RPE criteria. Table 4.3 demonstrates the ad-

vantage of frame-to-model alignment strategies over odometry methods in reducing

overall drift.
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Trans. RPE RMSE (cm/s)
Environment Sequence VO-SF EF CF BaMVO SF

fr1/xyz 2.1 1.9 2.3 – 2.4
Static fr1/desk 3.7 2.9 9.0 – 3.0
Env. fr1/desk2 5.4 7.2 9.2 – 4.79

fr1/plant 6.1 5.0 8.9 – 9.14
Low

Dynamic
Env.

fr3/sit static 2.4 0.9 1.1 2.4 1.1
fr3/sit xyz 5.7 1.6 2.7 4.8 2.81

fr3/sit halfsphere 7.5 17.2 3.0 5.8 3.17

High
Dynamic

Env.

fr3/walk static 10.1 26.0 22.4 13.3 1.3
fr3/walk xyz 27.7 24.0 32.9 23.2 9.25

fr3/walk halfsphere∗ 24.8 16.3 31.1 – 5.5
fr3/walk halfsphere 33.5 20.5 40.0 17.3 20.7

Table 4.1: Relative Translation Error.

Rot. RPE RMSE (deg/s)
Environment Sequence VO-SF EF CF BaMVO SF

fr1/xyz 1.00 0.91 1.34 – 1.43
Static fr1/desk 1.77 1.48 4.49 – 2.17
Env. fr1/desk2 2.45 4.07 4.79 – 3.28

fr1/plant 2.00 1.58 3.02 – 2.92
Low

Dynamic
Env.

fr3/sit static 0.71 0.30 0.44 0.69 0.42
fr3/sit xyz 1.44 0.59 1.00 1.38 0.90

fr3/sit halfsphere 2.98 4.56 1.92 2.88 2.07

High
Dynamic

Env.

fr3/walk static 1.68 4.77 4.01 2.08 0.39
fr3/walk xyz 5.11 4.79 5.55 4.39 2.26

fr3/walk halfsphere∗ 5.49 5.70 8.45 – 2.17
fr3/walk halfsphere 6.69 6.41 13.02 4.28 5.04

Table 4.2: Relative Rotation Error.

In highly dynamic sequences, our system outperforms the other approaches for the

following reasons:

• EF is not designed to handle dynamics in the scene. Thus, moving objects corrupt

its 3D reconstruction and, in turn, its pose estimate.

• VO-SF and BaMVO are odometry-based methods which cannot handle sequences

where more than 50% of the image contains dynamics

• CF tracks and reconstructs rigid objects, and its performance deteriorates when non-

rigid elements such as people are present in the scene.

As mentioned in Section 4.2.4, StaticFusion requires sequences with limited dy-

namics during the initialisation stage of the model and for this reason it produces high
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Trans. ATE RMSE (cm)
Environment Sequence VO-SF EF CF SF

fr1/xyz 5.1 1.2 1.4 1.5
Static fr1/desk 5.6 2.1 17.7 2.4
Env. fr1/desk2 17.4 5.7 16.8 4.1

fr1/plant 7.8 5.3 12.6 9.0
Low

Dynamic
Env.

fr3/sit static 2.9 0.8 1.1 1.3
fr3/sit xyz 11.1 2.2 2.7 3.9

fr3/sit halfsphere 18.0 42.8 3.6 4.0

High
Dynamic

Env.

fr3/walk static 32.7 29.3 55.1 1.5
fr3/walk xyz 87.4 90.6 69.6 9.3

fr3/walk half∗ 48.2 48.6 75.6 5.8
fr3/walk half 73.9 63.8 80.3 39.1

Table 4.3: Absolute Translation Error.

A B C D

Figure 4.3: Top: The background reconstruction evolves to reflect changes in the scene. Bot-
tom: Corresponding RGB image (left) and computed segmentation (right) for each instance,
where red means dynamic and blue means static. Between (A) and (C) the model adapts to
remove dynamic objects based on a correct segmentation. The sequence at the instance of
(D) contains significant dynamics and the model provides a valuable prior knowledge of the
scene, allowing for correct segmentation and pose estimation.

errors on fr3/walking halfsphere. We include the additional sequence fr3/walking halfsphere*,

which skips the initial 5 seconds which have high dynamics, in order to illustrate the

ability of the method to perform well for that same scene when the initial frames are

not so challenging (note that the other methods still fail in this case).

In order to illustrate how our background model handles moving objects, Fig. 4.3

shows the temporal evolution of the map built during the sequence fri3/walking static.

It can be seen that the map evolves to reflect changes in the scene. It efficiently re-

moves moving parts, keeping only the structure which represents a valuable prior for

accurate segmentation of dynamics.
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4.3.1.2 Importance of Regularisation Terms

In this section we examine the importance of the two regularisation terms described in

Section 4.2.2.2, namely SR, which encourages neighbouring clusters to have a similar

score, and SP , which is a segmentation prior. Table 4.4 reports results regarding ATE

and RPE of the performance of the system with and without these priors.

In static scenes including the priors improves accuracy by a small extent as they en-

able the algorithm to compute accurate estimates of the motion segmentation. Their

contribution becomes more evident in dynamic scenes where they significantly im-

prove the robustness of the method.

Trans. ATE Trans. RPE Rot. RPE
Sequence RMSE (cm) RMSE (cm/s) RMSE (deg/s)

None SP + SR None SP + SR None SP + SR
fr1/xyz 1.5 1.5 2.4 2.4 1.50 1.43
fr1/desk 2.9 2.4 3.5 3.0 2.85 2.17
fr1/desk2 6.9 4.1 7.8 4.79 4.70 3.28
fr1/plant 9.6 9.0 10.0 9.14 3.42 2.92

fr3/sit static 1.4 1.3 1.2 1.1 4.40 0.42
fr3/sit xyz 4.5 3.9 3.1 2.81 0.94 0.90

fr3/sit halfsphere 6.2 4.0 5.1 3.17 2.44 2.07
fr3/walk static 12.08 1.5 14.54 1.3 2.63 0.39
fr3/walk xyz 13.2 9.3 12.4 9.25 3.05 2.26

fr3/walk half∗ 11.7 5.8 16.1 5.50 4.86 2.17

Table 4.4: Absolute and Relative Translational and Rotational Errors for our approach with
and without the inclusion of priors. The priors aid the method with regards to accuracy and
robustness in all cases.

4.3.1.3 Importance of Image Resolution

In this experiment we analyse the performance and run-time of the algorithm on de-

creasing image resolutions. The maximum resolution of the image pyramid is set in

decreasing order to 640× 480, 320× 240, 160× 120 and 80× 60. The lowest level of the

image pyramid has a resolution of 20× 15 in each case, therefore the number of layers

in the pyramid are: 6, 5, 4 and 3 respectively.

Table 4.5 summarises the ATE results obtained using the different image resolu-

tions and also lists their respective run-times. While the best results are achieved

with the highest resolution, it is also worth noting that decreasing the resolution from

640× 480 to 320× 240 leads to only marginally worse accuracy results while the run-

time is reduced to approximately a quarter.
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Trans. ATE RMSE (cm)
Environment Sequence 640× 480 320× 240 160× 120 80× 60

fr1/xyz 1.4 1.5 1.5 1.5
Static fr1/desk 2.5 2.4 2.5 3.5
Env. fr1/desk2 4.5 4.1 4.2 5.0

fr1/plant 8.2 9.0 11.6 17.9
Low

Dynamic
Env.

fr3/sit static 1.1 1.3 1.5 2.0
fr3/sit xyz 3.6 3.9 4.5 6.3

fr3/sit halfsphere 3.9 4.0 4.1 9.2
High

Dynamic
Env.

fr3/walk static 1.3 1.5 2.3 4.7
fr3/walk xyz 10.0 9.3 11.5 139

fr3/walk half∗ 5.5 5.8 6.4 10.1
Runtime (ms/frame) 116 30 13 8

Table 4.5: Absolute Translation Error on Decreasing Image Resolution.

4.3.2 Qualitative Evaluation (3D Maps)

In this section we evaluate our approach in scenes with varying levels of dynamism.

To this end, we have recorded two sequences with a hand-held RGB-D camera. In the

first sequence the camera observes a person interacting with objects and performing

varied motions at different speeds. Occasionally the person remains still and close to

the camera, which poses a challenge to the tracking system because it must be able to

segment out the person as soon as they move in order not to lose track of the sensor.

For the second test we have recorded a ‘selfie sequence’ during which a person carries

the camera while it points at them. This is a very complex test because the person often

occupies more than 50% of the image and looks quasi-static with respect to the camera

(which represents a strong local minimum for the motion estimate of any method

which does not segment moving parts explicitly). We encourage the reader to inspect

the video in Appendix A.3.2 in order to see these experiments.

Results for the first sequence are shown in Fig. 4.4. It can be seen that the person

is initially inserted in the map because he does not move, but is removed as soon as

he moves. The segmentations estimated by StaticFusion are almost perfect during the

whole sequence: the person is always segmented correctly, as well as the ball and the

door when it gets closed.

The second sequence starts and finishes with the camera at the exact same position

(see Fig. 4.5), which allows us to measure the overall drift for the full trajectory. It can

be observed that our algorithm is able to provide good predictions (CM , ZM ) and

accurate camera pose estimates even when the person covers most of the view of the
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Start End

Figure 4.4: Top: Evolution of the map built during the first sequence of Section 4.3.2. Bottom:
Some of the sample input images and the segmentations that StaticFusion creates for them.

1

2

3

4

3

2

1

4

Figure 4.5: Left: trajectory estimated by StaticFusion for the second experiment in Section
4.3.2. Right: Some of input images of this sequence (first column), together with our predic-
tions for those same views (second column) and the estimated segmentations (third column).

camera.

ElasticFusion [54] and Co-Fusion [108] were also tested with these sequences, and

they both fail to provide good pose estimates. Figure 4.6 illustrates some of these

failures. Figure 4.6 (A) shows the map reconstructed by ElasticFusion for the first

sequence before it loses track of the camera (note the double chair and the misaligned

walls). Figure 4.6 (B) shows how Co-Fusion finds too many moving objects during the

second sequence and randomly keeps track of those parts of the scene, destroying the

overall map. For that sequence, with an estimated trajectory length of 9.5 metres, the
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(A) (B)

Figure 4.6: (A) shows how ElasticFusion adds the person into the map multiple times and
eventually fails to estimate the camera motion. In (B) Co-Fusion finds and tracks multiple
independent phantom objects (note that the region surrounded by the blue circle is part of the
person as well).

final drift of our method is just 1.5 centimetres, whereas the total drift for ElasticFusion

and Co-Fusion was 1.03 metres and 0.88 metres respectively.

4.3.3 Failure Cases

In this section we discuss some of the problems and failure cases of our method.

4.3.3.1 Segmentation Estimation

Motion segmentation is computed based on residuals, with the intuition that data

which agrees with the model is likely part of the static background, while points which

do not have a model correspondence are part of moving objects.

This design makes our approach sensitive to the quality of the sensor and the data

it provides.

Noisy data from specular objects or objects which are far from the sensor may

generate high residuals and thus be classified as dynamic even though they are not

moving. Figure 4.7 shows examples of false-positive segmentation estimates, where

flickering in the depth estimation due to the monitor (4.7a) and from an object located

at a distance from the camera (4.7b) are segmented as dynamic.

For pose estimation this may not be a severe limitation as we would only want to

use the data of best quality when estimating the motion the sensor. However, the 3D

reconstruction will be effected and may contain holes in the places where the data is

noisy.
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(a) The monitor is incorrectly segmented as dynamic because depth estimation on the black
matte monitor is flickery, which results in large residuals.

(b) The floor in the bottom right area of the image is incorrectly segmented as dynamic because
it generates large residuals as it is far away from the camera.

Figure 4.7: Examples of motion segmentation false-positive detections. RGB image (left),
depth image (centre), computed segmentation (right), where blue means static and red means
dynamic.

This design also means that, for moving objects to be detected, their residuals must

be larger than those corresponding to data of average quality. Thus, small objects may

not be detected as dynamic as their residuals may be small and comparable to those

of points considered inliers.

4.3.3.2 3D Reconstruction

The fusion technique removes existing surfels from the 3D model if it is possible to see

behind this surface in the current sensor data. However, this strategy does not result in

a fully clean reconstruction, as some surfels may remain in places where no structure

is sensed behind, for example when the background is too far away to be detected by

the sensor. This results in reconstructions which contain some ”flying points” and an

example of this is shown in Figure 4.8.

A solution to this problem could be to compute connected components of the map

and remove those which are small and isolated. Connected component analysis how-

ever is computationally expensive and it may be necessary to run this procedure on a

separate thread. Thus, the main thread would continuously perform 3D fusion while

the secondary thread would occasionally process the map and clean it using connected

components analysis.
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Figure 4.8: Top: An example of a reconstruction which still contains a person even after they
have moved (encircled in red). Bottom left: current RGB-D image pair. Bottom right: RGB-D
model prediction image pair. The person is not removed from the reconstruction because the
current depth image does not contain data in the area where they were sitting.

4.4 Discussion

In this chapter we proposed an approach for RGB-D SLAM in dynamic environments.

It is based on building and exploiting a 3D background model that only contains static

parts of the scene and using this to accurately estimate the motion of the RGB-D cam-

era in the presence of moving objects.

We evaluated our approach on a standardised dataset including sequences with

several moving objects and compared it against state-of-the-art techniques. Our qual-

itative and quantitative results demonstrate that it outperforms related approaches

and it achieves a competitive runtime of 30 milliseconds/frame.

Since publication, this approach has been considered state-of-the-art and used as a

baseline for robust RGB-D visual odometry in dynamic environments in several new

research works [110, 115, 116, 117].

While our approach is robust to high levels of dynamics if a confident model of the

environment is in place, it can fail if the initial stream of images contains more than

∼ 30% of moving elements. Also, the approach struggles if significant portions of the

estimated static scene begin moving (> 50% of the image).
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The method could be made more robust through several approaches:

• Implementation of multi-frame optimisation to ensure that the background and

moving objects are consistently detected within consecutive frames.

• Sensor fusion using a motion prior as proposed in the previous chapter is also a

reasonable extension direction. The motion prior would improve robustness of

camera pose estimation and aid in the computation of motion segmentation.

• Related approaches leverage progress in Deep Learning techniques for semantic

segmentation and object classification [110, 115]. These approaches track and

reconstruct multiple classes of objects and use semantics to reason about which

ones are dynamic. Whilst our approach attempts to be as general as possible

by only reasoning about motion, further robustness can be achieved by fusing

semantic information within the motion segmentation procedure.

We explore the second option in the next chapter by combining this visual SLAM

system with an inertial sensor in order to analyse the importance of both techniques

for handling dynamic environments.
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Chapter 5

Dense RGB-D SLAM in Dynamic

Environments using Inertial

Sensing and Motion Segmentation

As discussed in previous chapters, moving objects are challenging for visual SLAM

because they can cause failures in camera pose estimation or be wrongly fused into

the map.

Typically, this problem is handled either by integrating a motion prior from a sep-

arate sensor within visual odometry to enable the system to ignore these objects or by

segmenting moving objects (using semantics or motion) and removing them before

visual odometry.

This has also been the approach of this thesis, as in Chapter 3 we used a kinematic-

inertial motion prior to aid with robustness, while in Chapter 4 we implemented

residual-based motion segmentation to eliminate moving objects during visual odom-

etry.

In this chapter we aim to further examine and evaluate the performance of Static-

Fusion (the method introduced in the previous chapter) by extending it with rotational

prior information from a gyroscope. Through this extension we study and compare

the use of a motion prior against motion segmentation, in order to understand their

contributions and weaknesses for handling dynamic scenes.

We start from the simple baseline of frame-to-model alignment where all the pixels

in the image are used to compute the camera motion. We then formulate a simple
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extension to integrate a motion prior from a gyroscope within the visual odometry

process, without otherwise modifying it. Finally, we include the motion segmentation

formulation proposed in the previous chapter and use it to filter out the pixels which

belong to moving objects.

We evaluated all these configurations separately using a dataset which we col-

lected with the Intel RealSense ZR300, a sensor that contains an RGB-D camera and an

IMU, in a Vicon motion capture arena used to collect ground truth trajectory estimates.

We record sequences in increasingly challenging scenarios, starting from completely

static scenes, to scenes with small moving objects covering 20-30% of the field-of-view

and ending with scenes where moving objects temporarily occupy > 50% of the field-

of-view and also transition between being in motion and being static.

We find that using both a motion prior and motion segmentation improve perfor-

mance and reliability. The rotational prior provides increased robustness against the

baseline vision-only configuration and good performance in scenes where moving ob-

jects occupy a small portion of the image. Its influence is diminished if the majority of

the image contains moving objects. Here, motion segmentation is necessary to detect

and remove dynamic objects, thus reducing drift during visual odometry.

5.1 Handling Dynamic Environments in Dense RGB-D SLAM

As mentioned, there are two main strategies to tackle the presence of moving objects

in visual SLAM:

• Integrating a motion prior from an external sensor. Motion priors are used in

visual SLAM for handling fast motions and textureless scenes, but their perfor-

mance in dynamic environments is not well understood. In particular, moving

objects induce motion conflict in sensor fusion systems: visual odometry can pro-

duce very different and potentially contradictory motion estimates compared

to proprioceptive sensors in this case, rendering fusion difficult or less effective

than in static environments.

• Computing image segmentation of the camera feed to remove dynamic objects

before visual odometry, through techniques based on motion or semantic detec-

tion.

Next, we discuss approaches for both strategies.
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5.1.1 Motion Prior Integration

Visual-inertial odometry and SLAM systems have been researched significantly in re-

cent years for several reasons: cameras and IMUs are now available at low cost and

the combined sensors are lightweight and of small size which makes them applicable

to small mobile platforms [118].

Visual-inertial approaches display a trade-off between resource requirements and

accuracy. High accuracy is achieved with batch optimisation approaches which pro-

cess all image frames and IMU measurements simultaneously to produce compelling

results in offline implementations [119, 120]. At the other extreme, filtering approaches

are very computationally efficient but accumulate more error as they only process the

most recent sensor measurements [121, 122]. Fix-lag smoothing methods sit in be-

tween. They maintain a short history of images and IMU measurements and perform

estimation using these [123, 124, 69].

The IMU has several limitations as a motion prior source. While gyroscopes can

be used to compute an estimate of the inter-frame rotation of the camera, estimating

linear velocity and translation from the accelerometer is non-trivial due to the complex

coupling of bias, noise and gravity. Translational estimates computed purely from

inertial data can be unreliable for any duration longer than 1-2 seconds. Laidlow et

al. [69] report that in some cases more accurate results can be obtained with vision-

gyroscope fusion rather than full inertial integration (Section VI.B.3 of their paper).

For this reason and also because we use the same sensor as Laidlow et al. (Intel

RealSense ZR300), we have omitted accelerometer fusion in the system developed in

this chapter.

On robotic platforms, wheel or leg odometry provide more reliable estimates of

translational motion, as this is sensed directly [125]. Unlike accelerometry fusion, the

odometry from wheels or legs can differentiate between a stationary robot and a robot

moving at constant velocity. However, translational estimates can be incorrect when

slippage or dynamic foot impacts occur.

Approaches fusing RGB-D vision and motion priors have not been evaluated in

dynamic environments and we are interested to understand if sensor fusion can pro-

vide sufficient robustness in this case.
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5.1.2 Image Segmentation

This approach detects dynamic objects in images and segments them such that only

background pixels are used to compute the camera motion.

Segmentation can be done either by detecting the motion of different objects or by

semantic labelling. In the case of semantics, segmentation is mostly limited to people

[110] or cars in traffic environments [126]. This is effective in eliminating the main

potential causes of motion in a scene, but is often insufficient. For example, in indoor

environments, many types of objects, such as furniture or household objects, can be

moved.

Motion-based segmentation is a more general approach, but is difficult to compute

when the camera is also moving. During visual odometry, it is impossible to compute

segmentation if more than 50% of the current image contains moving objects [79].

Once detected, moving objects can be removed from the visual odometry proce-

dure and either discarded [127] or reconstructed and tracked [108]. The reconstruction

of dynamic objects is challenging as they are non-rigid and one must estimate defor-

mation fields to track their motion [112, 113].

To avoid complexity and maintain a real-time operation, we treat dynamic objects

as noise and do not track or reconstruct them.

5.2 System Overview

We formulate our approach as an extension of the system described in Chapter 4,

StaticFusion. For simplicity, we maintain the same notation as used in that chapter.

To reiterate, StaticFusion is a real-time dense RGB-D SLAM system with a two step

architecture, alternating between tracking and mapping. During tracking we simul-

taneously estimate the camera motion ξ and a static/dynamic segmentation of the

current input image b, in a combined energy function which takes the form:

E(ξ, b) = D(ξ, b) + S(b) . (5.1)

The mapping component builds a dense surfel-based 3D model of the environ-

ment, based on [54].

We extend our system with additional information from a gyroscope in order to

analyse its importance in dynamic scenes. As previously mentioned, accelerometry is
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omitted.

5.2.1 Computation of Rotational Prior from Gyroscope

We refer to (est)TAti→Btj
as the transformation measured by the estimator est of frame

B at time tj relative to frame A at time ti. The transformation T ∈ SE(3) is composed

of a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3. We make use of the

gyroscope estimator g with coordinate frame G and the visual odometry estimator vo

with camera coordinate frame C.

5.2.1.1 Incremental Rotation Estimation

The gyroscope produces estimates at a much higher rate compared to the camera (ap-

proximately 200Hz, as opposed to 30Hz for the camera). In order to compute a rota-

tional prior to be used in visual odometry, we must cumulate all M gyroscope mea-

surements sensed between two consecutive images recorded at time instances t and

t+ 1:

(g)RGt→Gt+1 =

M∏
i=1

exp((ωi − g)∆ti) , (5.2)

where ωi ∈ R3 is an individual angular velocity estimate, g ∈ R3 is the gyroscope bias

that we estimate at the start of the experiment and ∆ti is the amount of time between

consecutive gyroscope measurements.

This rotational increment is estimated with respect to the gyroscope body frame,G,

however we make use of it during visual odometry and must convert it to the camera

coordinate frame, C. We perform offline extrinsic calibration of the RGB camera and

the IMU using the Kalibr system [73] to estimate the pose of the camera with respect

to the gyroscope, TG→C , which is used to convert all rotational estimates to the camera

coordinate frame:

(g)RCt→Ct+1 = RC→G
(g)RGt→Gt+1RG→C . (5.3)

5.2.1.2 Initial Gyroscope Bias Estimation

We estimate the gyroscope bias g ∈ R3 at the start of the experiment by assuming

a number of known visual odometry estimates. We start each experiment by facing

the sensor towards a static scene that contains sufficient 3D information to constrain
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visual odometry and rotate it on all 3 axes. We compute a series of rotational visual

odometry increments, (vo)RCt→Ct+1 , and convert them to the gyroscope coordinate

frame, (vo)RGt→Gt+1 , using the same technique as described above (Eq. 5.3).

We formulate one gyroscope bias g residual for each pair of corresponding vision

and gyroscope motion estimates, where ∆t is the amount of time during which these

motions were estimated:

rbias(g) = log((g)RGt→Gt+1
(vo)R−1

Gt→Gt+1
)/∆t− g . (5.4)

One pair of corresponding estimates is sufficient to solve for the value of the bias

vector, however, we make use of multiple such pairs in order to reduce the influence

of outliers:

Ebias(g) =
N∑
i=1

ribias(g)Tribias(g) . (5.5)

Ebias is quadratic and we solve it analytically to yield the gyroscope bias g which,

for simplicity, is maintained constant for the duration of the experiment. The accuracy

of our proposed system could be further improved through the implementation of

online gyroscope bias estimation, as described in the systems of Forster et al. [120] and

Mur-Artal et al. [68].

5.2.1.3 Rotational Prior Formulation

The (g)RCt→Ct+1 quantity (estimated through Eq. 5.2 and Eq. 5.3) is used to formulate

a residual prior for the rotation component of the current incremental motion estimate:

rg(ξ) = log((g)RCt→Ct+1 exp(ξrot)
−1) , (5.6)

where ξrot refers to the rotational component of the current pose increment.

We now formulate an energy term, G, for this residual, to be integrated within the

original formulation (Eq. 5.1).

As opposed to dense image alignment, which computes one residual for each valid

pixel, the gyroscope provides a single residual in total. We must allocate a weight to

this term to enable it to contribute during optimisation.

As mentioned, we evaluate the relative importance of motion prior integration and
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motion segmentation separately, regarding robust camera pose estimation in dynamic

scenes. In order to assess both scenarios, we compute two forms for the energy term

G, depending on the configuration of the system.

First, we describe our naive baseline configuration for dense visual odometry and

gyroscope integration. Second, we describe our strategy for combining gyroscope and

motion segmentation to explicitly tackle motion conflict.

5.2.2 Visual Odometry and Rotational Prior Integration

Baseline Configuration: Pure Gyroscope Integration When information about mo-

tion segmentation is not available, the gyroscope term is weighted by the inverse co-

variance of the rotational increment:

G(ξ) = rg(ξ)TΣ−1
g rg(ξ) , (5.7)

where the covariance iΣg corresponding to gyroscope measurement i is estimated by

forward propagation [120]:

iΣg = exp((ωi − g)∆t)i−1Σg exp((ωi − g)∆t)T +B∆t , (5.8)

for i ∈ [1,M ], and where B is the covariance of the gyroscope process noise. 0Σg is

reset to O3×3 before every rotational prior computation. In our implementation, B is

set to:

B = I3×3σ
2
g , (5.9)

where σg = 1.1e−2.

Within this configuration motion segmentation is not estimated, which is equiva-

lent to having a segmentation of bi = 1 for all clusters. As a consequence, all pixels

contribute within the visual odometry procedure, including those representing mov-

ing objects.

Proposed Configuration: Joint Gyroscope and Motion Segmentation Integration

We propose a fusion approach that directly tackles motion conflict by computing an

adaptive energy term G which favours frame-to-model alignment in static scenes and

allocates a stronger influence to the gyroscope in dynamic scenes. To achieve this

effect, we weigh the rotational prior inversely proportional to the estimated segmen-
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tation b:

G(ξ, b) =
K∑
i=1

Ki(1− bi)2rg(ξ)Trg(ξ) , (5.10)

where Ki represent the number of points with valid depth in cluster i. This results

in strong reliance on the gyroscope in dynamic scenes, as we limit the potential of

moving objects within images to counteract the contribution of the motion prior.

In static scenes, however, vision is given more influence. This strategy is useful

when performing sensor fusion with low-cost MEMS gyroscopes, which can introduce

noise in the estimation system. In addition, frame-to-model alignment does not drift

if the camera is continuously exploring the same environment.

5.2.3 Segmentation Prior

The original StaticFusion approach initialises the static/dynamic segmentation b by

computing per-cluster residuals between the current frame and the model prediction

assuming zero motion (Eq. 4.11).

However, given the estimated rotational increment from the gyroscope, (g)RCt→Ct+1 ,

we compute a more accurate initialisation by first warping the current image using

this increment before computing residuals. For this computation, the rotational esti-

mate (g)RCt→Ct+1 is converted to a homogeneous transformation (g)TCt→Ct+1 where

the translational component is set to zero.

r̄i =

∑Ki
k=1|ZM (WT (xk, (g)TCt→Ct+1))− |(g)TCt→Ct+1 π

−1(xp, ZD(xp))|z|
Ki

, (5.11)

where the warping functionWT takes the form:

WT (xp,T ) = π(T π−1(xp, ZD(xp))) . (5.12)

This quantity is used to compute a more accurate prior for the segmentation of cluster

i:

bPi = 1− kpr̄i , (5.13)

which takes the place of the original segmentation prior formulation as described in

the previous chapter in Eq. 4.11.
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5.2.4 Formulations

Finally, we can specify two novel configurations which we will evaluate:

1. Baseline FTM-G: Frame-to-model alignment with a rotational prior (with bi =

1, ∀i):

E(ξ) = D(ξ) +G(ξ) . (5.14)

2. Proposed FTM-MS-G: Frame-to-model alignment with motion segmentation and

a rotational prior:

E(ξ, b) = D(ξ, b) + S(b) +G(ξ, b) . (5.15)

These cost functions, as well as the original formulation from Eq. 5.1, are solved using

the same iteratively re-weighted least squares procedure described in the previous

chapter.

Algorithm 5 lists the procedure for implementing the FTM-MS-G formulation. It

reproduces the frame-to-model alignment in StaticFusion (described in Algorithm 3),

with highlights in blue representing the changes required for gyroscope rotational

prior integration.

Next, we evaluate all configurations against our dynamic scenes dataset.

5.3 Evaluation

To evaluate the approach we collected a dataset containing a variety of degeneracies

which cause typical RGB-D SLAM systems to fail such as (1) sequences with motion

present in > 50% of the image, (2) changes in the scene between observation and re-

observation of a particular location and (3) aggressive camera motion.

5.3.1 Dataset Collection

We used the Intel RealSense ZR300 camera which consists of an RGB-D camera syn-

chronised with an IMU containing gyroscopes and accelerometers. We used the Intel-

provided ROS driver to collect our dataset, which generates RGB-D data at 30Hz

and gyroscope data at 200Hz. We performed offline extrinsic calibration between the

colour camera and the IMU using the Kalibr system [73].
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Algorithm 5: Frame-to-model alignment using inertial sensing and motion
segmentation

Input: ID, ZD, IM , ZM , ξg
compute image pyramids for ID, ZD, IM , ZM ;
initialise ξ = 06×1;
initialise b = 0K×1;
initialise ξ̂g = ξg;
foreach level of the pyramid do

foreach iteration do
warp ID towards IM given current ξ;
warp ZD towards ZM given current ξ;
compute segmentation prior bP (5.13);
if b not initialised then

b = bP

compute weights wI , wZ (4.7, 4.8);
compute visual odometry residuals rI and rZ (4.3 ,4.2);
compute motion prior residual rg (5.6);
foreach IRLS iteration do

compute Cauchy weights WI ,WZ using segmentation b;
solve for ∆ξ (4.5);

(J>I WIJI + J>ZWZJZ+wgJ
>
g Jg)∆ξ =

−(J>I WZrI + J>ZWZrZ+wgJ
>
g rg);

update residuals rI and rZ ;
solve for segmentation b (4.13);

update ξ;
ξ = log(exp(ξ) exp(∆ξ));

update ξ̂;
ξ̂g = log(exp(ξg) exp(ξ)−1)
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Type No. Selected Images Time[s] Len[m] 

slow camera motion 1 

      

83 24 

slow camera motion 
 

loop closure 
2 

      

50 12 

aggressive camera 
motion 

 
loop closure 

3 

      

81 22 

minimal scene 
dynamics 4 

      

70 18 

medium scene 
dynamics 5 

      

74 29 

medium scene 
dynamics 

 
loop closure 

6 

      

76 19 

strong scene 
dynamics 

 
environment changes 

7 

      

101 25 

strong scene 
dynamics  

 
environment changes 

8 

      

86 24 

 
 Figure 5.1: A visual description of our collected dataset. Each sequence is progressively more

complicated as moving objects appear more frequently and occupy an increasing portion of
the camera field of view. We include the duration and length of each trajectory.

Figure 5.2: Our evaluation set-up. Left: Our Intel RealSense ZR300 camera with mounted
motion capture markers. Right: Our Vicon system.

The dataset was acquired within a Vicon motion capture arena which allows us to

quantify the effect that these challenges have on our proposed approach.

We designed a frame in AutoDesk to connect a set of Vicon markers to the Intel

ZR300. The camera URDF provides coordinate frames for the colour camera optical

frame as well as the bottom screw frame and we use these to perform spatial calibra-

tion between the motion capture system and the camera. Figure 5.2 illustrates our
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set-up. We also synchronise the Vicon computer and the data collection laptop clocks

through the network.

An overview of the dataset can be seen in Figure 5.1. Sequences are ordered in

increasing complexity from top to bottom. For each individual experiment, a batch

of images are shown in chronological order. These sequences can be characterised as

follows:

• Sequences 1 - 3 are recorded in static scenes and only vary regarding the length

of the trajectory and the speed of the camera motion.

• Sequence 4 contains mostly a static scene and occasionally a dynamic object of

small size moving in front of the camera on 2 or 3 occasions. This object would

never occupy > 30% of the image.

• Sequences 5 and 6 contain large objects which move in and out of the camera

view. When they appear, the objects move continuously and occasionally occupy

∼ 50% of the image.

• Sequences 7 and 8 contain significantly larger objects which alternate between

being in motion and being stationary. These objects would frequently occupy

> 50% of the image.

The significant differences between Sequences 5-6 and 7-8 are the larger sizes of

the objects present in the latter sequences. Because the moving objects transition be-

tween being in motion and being stationary, the visual SLAM system is required to

repeatedly fuse and remove them from the 3D model it is creating.

5.3.2 Quantitative Evaluation

When evaluating trajectory accuracy, we use the established metrics defined by Sturm

et al. [26], namely Absolute Trajectory Error (ATE) to evaluate the error over the whole

trajectory estimate and Relative Pose Error (RPE) to analyse the local drift. For both

metrics, we compute the Root Mean Square Error (RMSE).

To understand the importance of both motion segmentation and rotational prior,

we evaluate and compare the configurations of our system, as stated in Section 5.2.4.

In addition, we compare our system with state-of-the-art approaches:
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Translational ATE RMSE (cm)
Sequence VOSF EF SF FTM-G FTM-MS-G

(Proposed)
1 16.67 14.77 5.86 3.88 4.69
2 7.15 4.11 5.77 4.16 4.56
3 58.53 6.06 8.87 11.49 9.42
4 12.93** 48.38* 36.41* 16.17** 12.28
5 43.25* 37.41* 11.28 17.63 6.23
6 17.64** 47.44* 10.84 7.15 8.36
7 32.30* 43.51* 71.48* 27.30** 9.62
8 65.85* 49.81* 209.33* 50.90* 6.12

Table 5.1: Absolute Trajectory Error. FTM-MS-G achieves the most accurate results through
the integration of motion segmentation and gyroscope rotational prior. * marks that tracking
failures occurred during this sequence and ** marks significant drift without failure.

• The system for joint visual odometry and scene flow (VOSF) by Jaimez et al. [79],

which is designed to handle dynamic scenes. We investigate the performance

improvement that can be expected from building a 3D model of the static envi-

ronment.

• ElasticFusion (EF) [54], a dense RGB-D SLAM system designed for static scenes.

In this case, we investigate the benefits of motion segmentation or gyroscope

integration for handling dynamic environments.

• StaticFusion (SF) [125], our baseline system. As mentioned, we want to compare

the performance of gyroscope integration against motion segmentation when

handling moving objects.

Table 5.1 reports ATE results for all trajectories and configurations. Figure 5.3 con-

tains RPE results over increasing time intervals of selected sequences with increasing

amounts of dynamics present (Sequences 2, 4, 5 and 7).

We note that in static scenes (Sequences 1 and 2), the four map-based approaches

(SF, EF, FTM-G and FTM-MS-G) report similar performance, while VOSF suffers from

increased drift due to the lack of a 3D model.

Starting with the presence of minimal scene dynamics (Figure 5.3c - Sequence 4),

the performance of VOSF and EF degrade. This happens because VOSF performs

frame-to-frame alignment and cannot recover from an incorrectly computed pose or

segmentation, while EF uses all pixels within the image during visual odometry, which

causes it to fail when moving objects occupy a significant portion of the image.

For minimal to medium scene dynamics (Sequences 5 and 6), the performance of

114



0

20

40

60

80

100

T
ra

n
s
la

ti
o

n
a

l 
R

P
E

 [
c
m

]

Duration [s]

2 4 6 8 10

FTM-MS-G (Proposed)

FTM-G

SF

EF

VOSF

(a) Sequence 2 (slow camera motion, loop clo-
sure)

0

20

40

60

80

100

T
ra

n
s
la

ti
o
n
a
l 
R

P
E

 [
c
m

]

Duration [s]

2 4 6 8 10

FTM-MS-G (Proposed)

FTM-G

SF

EF

VOSF

(b) Sequence 5 (medium scene dynamics)

0

20

40

60

80

100

T
ra

n
s
la

ti
o

n
a

l 
R

P
E

 [
c
m

]

Duration [s]

2 4 6 8 10

FTM-MS-G (Proposed)

FTM-G

SF

EF

VOSF

(c) Sequence 4 (minimal scene dynamics)

0

20

40

60

80

100

T
ra

n
s
la

ti
o
n
a
l 
R

P
E

 [
c
m

]

Duration [s]

2 4 6 8 10

FTM-MS-G (Proposed)

FTM-G

SF

EF

VOSF

(d) Sequence 7 (strong scene dynamics, envi-
ronment changes)

Figure 5.3: RPE for increasing time intervals. In static scenes containing rich texture, all
approaches are robust and accurate. However, as the scene becomes more challenging, the
contribution of the gyroscope becomes evident and bounds the drift of the estimate. Finally,
in scenes with strong dynamics, both motion segmentation and motion prior are necessary to
achieve a low drift estimate.
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Figure 5.4: RPE over one second intervals for Sequence 5 (medium scene dynamics). FTM-
MS-G provides the most accurate results. FTM-G suffers from significant drift, while SF has a
catastrophic failure after 50 seconds.

SF and FTM-G are comparable, implying that either the integration of motion segmen-

tation or rotational prior is sufficient for good performance in this case.

In highly dynamic environments (Sequences 7 and 8), FTM-G outperforms the

pure vision approach, SF. This can also be seen in Figure 5.4, which shows the trans-

lational RPE for Sequence 5: the gyroscope prevents the solver from converging to a
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completely incorrect estimate, as it can happen for SF when moving objects occupy the

majority of the image. However, FTM-G accumulates significant drift as the amount

of points belonging to dynamic objects overwhelms the rotational prior within the

optimisation.

Importantly, across all scenarios, the most accurate results are achieved with FTM-

MS-G, which demonstrates that both motion prior and motion segmentation are nec-

essary to achieve robustness in dynamic scenes. Additionally, as our fusion strategy

attributes a larger weight to the gyroscope in dynamic scenes and a larger weight to

vision in static scenes, we can achieve accurate results in both scenarios.

We ran our experiments on a workstation with an Intel(R) Core(TM) i7-6700K CPU

at 4.00GHz and a GeForce GTX 970 GPU using the Ubuntu 16.04 operating system and

we achieve a run-time of 53milliseconds/frame with loop closures enabled.

5.3.3 Qualitative Evaluation

We present illustrations of the performance of FTM-MS-G for the most difficult se-

quences we recorded, namely Sequences 7 and 8. The reader is also encouraged to

inspect the videos of these experiments in Appendix A.3.3.1.

Figure 5.5 illustrates the performance of FTM-MS-G for Sequence 7. During this

sequence, a person is initially sitting on a chair and becomes fused within the recon-

struction. Afterwards, the person leaves their chair (as the camera is facing them) and

moves a backpack across the field of vision. The figure demonstrates the capability of

our approach to robustly track the pose of the camera when moving objects occupy a

large portion of the image, and also to handle large changes in the environment and

update the reconstruction accordingly.

During Sequence 8, a backpack is moved between multiple chairs while the camera

is following the backpack’s motion. The performance of our algorithm is shown in

Figure 5.6, where the upper part illustrates the map changing in time reflecting the

new location of the backpack.
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Figure 5.5: Top: Dense 3D reconstructions produced by our approach for a sequence where
a person stands up, walks into the camera view and moves a bag. Red circles indicate changes
in the map due to dynamics (or movement) during the experiment. Bottom: Two image pairs
of input colour images (left) and corresponding segmentation images (right), where dynamic
objects are coloured red and static structure is blue.

Start End

Figure 5.6: Qualitative evaluation of the performance of the algorithm during Sequence 8
(strong scene dynamics, changes in the environment). During this sequence, a bag is moved
between different chairs, while the camera is recording its motion. Top: Evolution of the map,
where red circles highlight changes. Bottom: Sample input images and computed segmenta-
tions (red - dynamic object, blue - static object).

The lower rows show corresponding colour and static/dynamic segmentation re-

sults (where moving objects are segmented as red and static objects are segmented as

blue). While the backpack occupies a large portion of the field of view, FTM-MS-G suc-
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ceeds in computing a correct motion segmentation and camera pose estimate thanks

to the integration of the rotational prior.

A positive feature of our system is that we are able to detect and segment general

moving objects by simple reasoning about residuals and without requiring semantic

information.

For completeness, the videos illustrating the performance of FTM-MS-G for the

remaining Sequences 1-6 can be seen in Appendix A.3.3.2.

5.3.4 Limitations

The Intel RealSense ZR300 is equipped with a consumer-grade MEMS IMU and we

find that the rotational prior from our gyroscope is only reliable for short durations.

If dynamic objects cover the majority of the image for more than ∼10 seconds, the

rotational prior will accumulate too much noise, causing the pose estimate to diverge.

This could be improved through the use of a high-end gyroscope.

Another limitation of our approach is that we did not explore the impact of a full

motion prior which would include translation. We expect translational or linear veloc-

ity priors originating from wheel odometry or leg odometry to be much more reliable

than those estimated using accelerometry and believe that future research in this type

of fusion would lead to very robust and reliable systems.

Finally, we discuss the performance of the loop closure detection systems of Elas-

ticFusion in dynamic environments. The global loop closure detection system is an

appearance based technique which builds a database of renderings of the 3D map

from the different poses of the camera. It attempts to match renderings of the map

from the current pose against those stored in the database, which can suffer when the

map changes significantly. We observe experimentally that loop closures are detected

mostly in areas of the environment which have not changed.

While in this thesis we have mostly focused on techniques for robust visual odom-

etry, achieving an overall reliable SLAM system also requires further research in de-

veloping place recognition techniques which can support environmental changes.
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5.4 Discussion

The purpose of this chapter was to perform further evaluation of the StaticFusion

system introduced in Chapter 4 by extending it with a motion prior computed from

a gyroscope and comparing the impact of this additional prior against the originally

proposed motion segmentation strategy.

For this, we have recorded a dataset with the Intel RealSense ZR300 sensor which

is equipped with an RGB-D camera and an IMU in a motion capture arena to record

ground truth trajectory estimates. The sequences in this dataset range from simple

static environments in which current visual SLAM systems work well, to sequences

with moving objects that occupy a large portion of the image. In some sequences,

these moving objects also alternate between being static and in motion, in order to

force the visual SLAM system to continuously update its map of the static scenes.

In our evaluation, we were mainly interested in comparing baseline StaticFusion

against a configuration that combines frame-to-model alignment with gyroscope in-

formation as well as the configuration which combines both gyroscope information

and motion segmentation.

We found that in scenes with minor to moderate levels of motion, motion seg-

mentation and gyroscope integration achieve similar accuracy while outperforming

related approaches. In highly dynamic scenes, the gyroscope provides increased ro-

bustness and outperforms StaticFusion, although significant drift is observed in the

pose estimate due to the unfiltered moving objects in the image.

The approach which combines both gyroscope motion prior and motion segmenta-

tion was found to perform best, as the gyroscope aids with robustness and the motion

segmentation is useful for removing moving objects during visual odometry, resulting

in the most accurate results for the proposed full fusion system.
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Chapter 6

Conclusions

In this thesis we have tackled the problem of visual SLAM and focused on techniques

for robust pose estimation in challenging real-world environments and applications.

In designing our solutions, we focused on stereo/RGB-D visual sensors because in

our opinion these are better than monocular cameras with respect to achieving robust

performances. Stereo/RGB-D visual odometry has several advantages compared with

monocular, as it does not require specific initialisation procedures, does not suffer

from scale drift and can handle pure rotational motions which constitute degeneracies

for monocular visual odometry.

Nevertheless, stereo/RGB-D odometry is fragile when used in unconstrained en-

vironments and its limitations could impede its deployment in real-world applications

such as Robotics. Its failure cases include:

• Textureless scenes could lead to unconstrained motion estimates.

• Moving objects contradict the static-scene assumptions in most state-of-the art

visual odometry approaches and lead to significant drift or failure.

• Illumination change can lead to high residuals for valid pixel correspondences

which can cause the visual odometry solver to converge to the wrong solution.

• Limited operational range and field of view of the sensors. In the case of the

stereo set-up, this limit is defined by the baseline, while for RGB-D sensors this

range is between 0.5m and 5m. In addition, the sensors we used also had a

small field-of-view, with 80◦×80◦ for the MultiSense SL and 58◦×45◦ for the

Asus Xtion Pro Live and Intel RealSense ZR300.
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6.1 Contributions

We have tackled these problems though a combination of motion priors and motion

segmentation. In summary, our contributions are:

• Chapter 3 researched a visual SLAM system which would be sufficiently robust

and reliable to operate on our humanoid robot Valkyrie. The requirements for

this system were that it should provide accurate pose estimates and produce a

map of the environment that is dense and accurate enough to enable collision-

free motion planning. To achieve this, we proposed a system which fuses dense

stereo visual odometry with a motion prior from the kinematic-inertial state es-

timator of the robot. This system was successful in producing pose estimates

which were robust to the challenges specified above and also produced a recon-

struction of sufficient accuracy for collision-free motion planning. However, this

system had limited support for handling moving objects and it did not support

changes to the created map.

• Chapter 4 focused on the problem of handling dynamic objects during visual

odometry and proposed a technique for simultaneous estimation of camera mo-

tion and motion segmentation of the current image into static and dynamic com-

ponents. Given those estimated quantities, the approach then built a 3D model

of the environment which only contained the static components. The approach

also provided a simple heuristic for removing objects from the 3D model if they

started to move. It showed superior performance against related state-of-the-

art dense visual odometry techniques when handling dynamic environments.

However, as it was a purely vision-based approach, it was susceptible to failure

when the majority of the image contained moving objects.

• Chapter 5 built on the system proposed in Chapter 4 and extended it using a mo-

tion prior from a gyroscope, improving performance significantly in sequences

where moving objects occupy the majority of the image. This work also allowed

for evaluating and comparing the importance of motion segmentation and mo-

tion prior integration for handling moving objects. We found that in moderately

dynamic scenes, the inclusion of either motion segmentation or the rotational

prior had similar effects. For highly dynamic scenes, the rotational prior out-
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performed the motion segmentation and was thus more important. Overall, the

proposed system which combined both priors yielded the best results.

6.2 Limitations and Future Directions

We found significant general benefits in the use of motion priors for handling all men-

tioned challenges, in particular leg odometry for linear velocity and gyroscopes for

angular velocity. One aspect which is not addressed in our work is how to handle

errors within motion priors. For example, leg or wheel slippage may induce high

velocity errors which in turn would corrupt the odometry estimates. Modelling and

handling such errors is a crucial component within a robust multi-sensor fusion SLAM

system.

Regarding sensor fusion, it is not clear in practice how well the sensors should

be synchronised. Many visual-inertial techniques advise to use a sensor where the

camera and IMU are hardware synchronised for best results. However, in a multi-

sensor fusion system such as the one we developed for the humanoid robot, it is not

possible to hardware synchronise the camera, joint encoders, force-torque sensors and

IMU. Instead, the synchronisation system for our humanoid robot is based on time-of-

arrival, with errors originating from the varying latencies of the sensors. Although not

perfect, this seemed sufficient for our application, however one reason for this could

be that the robot is not moving at high velocities, as compared with a drone. It would

be interesting to understand if techniques such as time-of-arrival are sufficient for fast

robots such as drones, or if more accurate sensor synchronisation is required in this

case.

Another aspect is to model and track the moving objects within the scene, as cur-

rently these are being regarded as noise and discarded within our approaches. Ob-

taining accurate models of moving objects would be useful for visual odometry as it

would provide prior information of what pixels in the current image are reliable and

should be used for motion estimation.

The use of semantic information is a very important research direction, with the

goal of building semantically annotated 3D models. Robots could then use these mod-

els not only as a source of collision information, but also to reason about which objects

they could interact with. Regarding our problem of robust visual odometry for dy-
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namic scenes, semantic information would be useful for detecting people or animals

and automatically labelling those pixels as moving objects, excluding them from mo-

tion estimation.

Regarding StaticFusion, currently this approach requires an initialisation sequence

with minimal dynamics in the scene to build the first reliable 3D model. Following

this, we compute independent motion estimates for each frame and no consistency

is enforced between moving objects segmented in consecutive frames. An interesting

research direction would be to perform multi-frame joint estimation of camera motion

and motion segmentation which would enforce that moving objects are detected con-

sistently between consecutive frames and thus produce better results than the current

systems.

Finally, in our work we have not considered the problem of place recognition for

implementing loop closures. As we are interested in supporting dynamic environ-

ments, it is also very important to research techniques for robust place recognition

that could support changes in the environment.

To conclude, we hope that our work is a step towards solving these problems and

supports progress in the field of visual SLAM.
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Appendix A

Source Code, Dataset and Videos

In this appendix we provide links to the software and datasets developed and col-

lected for this PhD. In addition we provide videos describing some of the experiments

conducted for this research.

A.1 Source Code

The open-source C++ implementation for StaticFusion, the method proposed in Chap-

ter 4, can be found here:

https://github.com/raluca-scona/staticfusion

A.2 Dataset

The dataset used for the evaluation in Chapter 5 is available here:

http://conferences.inf.ed.ac.uk/rgbd-imu-dynamic-dataset/

It consists of sequences collected with the Intel RealSense ZR300 (containing an

RGB-D sensor and an IMU) in a Vicon motion capture arena. The sequences contain

little to high levels of dynamic motion and enable the evaluation of visual odometry

robustness in dynamic scenes.

A.3 Videos

In this section we list videos of experiments performed for each chapter within this

thesis.
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A.3.1 Camera Pose Estimation with Motion Prior Integration Applied to

Humanoid SLAM

Video describing experiments with the humanoid robot Valkyrie from Chapter 3:

https://youtu.be/dv0ADFQkU3E

This includes:

• A demonstration of closed-loop visual SLAM running on Valkyrie.

• A demonstration of the robustness of the proposed system to visual challenges

including illumination changes, textureless scenes, motion blur and moving ob-

jects in the scene.

• A visualisation of the 3D stereo reconstruction compared to LIDAR point clouds.

• An experiment demonstrating collision-free motion planning, where the robot

plans a reaching motion using the 3D reconstruction to avoid colliding with the

environment.

A.3.2 Joint Visual Odometry and Motion Segmentation for SLAM in Dy-

namic Environments

Video describing experiments from Chapter 4:

https://youtu.be/UVsqIgxHoBM

This includes:

• A demonstration of the robustness of StaticFusion to moving objects in the scene

on a self-recorded sequence.

• A demonstration of StaticFusion compared to state-of-the-art approaches Elas-

ticFusion [54], Co-Fusion [108] and Joint Visual Odometry & Scene Flow [79] on

sequence fr3/walking static from the TUM/Freiburg dataset [26].

• The performance of StaticFusion on a self-recorded ‘selfie sequence’ where the

moving person occasionally occupies more than 50% of the image.

• The performance of StaticFusion on the static sequence fr1/desk from the TUM/Freiburg

dataset.
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A.3.3 Dense RGB-D SLAM in Dynamic Environments using Inertial Sens-

ing and Motion Segmentation

For Chapter 5 we recorded a dataset of RGB-D-gyroscope sequences in scenes with

increasing numbers of moving objects and with camera trajectory ground-truth esti-

mates from a Vicon motion capture system.

For the video recordings of the experiments, the estimated trajectory is shown in

red and the ground-truth trajectory in black.

A.3.3.1 Notable Results

The following video provides an overview of the notable results:

https://youtu.be/VTCYLFUGJnk

This includes:

• A demonstration of the performance of the proposed system for Sequence 8,

where an object is moved between different locations while the camera is track-

ing its motion. This experiment contains strong scene dynamics and environ-

ment changes.

• A comparison of the effects of moving objects on (1) simple frame-to-model

alignment, (2) StaticFusion and (3) gyroscope fusion neglecting motion segmen-

tation.

• A demonstration of the performance of the proposed system for Sequence 7,

where a person moves in front of the camera and also moves an object. Simi-

larly to Sequence 8, this sequence contains large objects which frequently occupy

more than 50% of the image and alternate between being in motion and being

stationary.

A.3.3.2 Results on Entire Dataset

As this dataset is new, we list in this section videos of the performance of our system

for each recorded sequence.

• Sequence 1 – the camera is moved back and forth in a static scene:

https://youtu.be/kRTxvcglJsE
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• Sequence 2 – the camera is moved in a loop in a static scene:

https://youtu.be/QVQNaQaDheM

• Sequence 3 – the camera is moved in a loop and it is also shaken during this

trajectory. The scene is static:

https://youtu.be/r1LO3ccLn4w

• Sequence 4 – objects occupying around 30% of the image appear occasionally in

view:

https://youtu.be/pa-G0pWGqaU

• Sequence 5 – objects which occasionally occupy at most 50% of the image appear

in view:

https://youtu.be/EF2paCaj0yU

• Sequence 6 – the camera is moved in a loop and occasionally there are objects

appearing which occupy less than 50% of the field of view:

https://youtu.be/Tj801xQzmpI
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Appendix B

Other Contributions

This PhD contributed to another research project which does not form a part of this

thesis:

Overlap-based ICP Tuning for Robust Localization of a Humanoid Robot [128]

Simona Nobili, Raluca Scona, Marco Caravagna, Maurice Fallon. In Proceedings

of IEEE International Conference on Robotics and Automation (ICRA), 2017

Personal contributions include:

• Assisting with data collection using the Valkyrie robot.

• Assisting with running closed-loop experiments using the Valkyrie robot.

• Contributing to the paper content and figures.

Shortened Abstract In this paper we focus on the localisation of a humanoid robot

with limited LIDAR field-of-view in a semi-structured environment. We analyse the

effect of overlap variations on point cloud registration performance and demonstrate

that where overlap varies, outlier filtering needs to be tuned accordingly. We define

a novel parameter which gives a measure of this overlap. In this context, we pro-

pose a strategy for robust non-incremental registration. The pre-filtering module se-

lects planar macro-features from the input clouds, discarding clutter. Outlier filter-

ing is automatically tuned at run-time to allow registration to a common reference in

conditions of non-uniform overlap. An extensive experimental demonstration is pre-

sented which characterises the performance of the algorithm using two humanoids:
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Figure B.1: White points belong to the reference cloud captured with respect to the blue pose.
The red points are accepted inlier matches and the green points are rejected outliers, all be-
longing to the reading cloud, captured from the yellow pose. Bottom: overlap variation is not
considered, leading in turn to incorrect point correspondences and registration failure. Top:
overlap variation is taken into account and outlier correspondences are filtered out, leading to
a successful registration. Photo credit Nobili et al. [128]

the NASA Valkyrie, in a laboratory environment, and the Boston Dynamics Atlas,

during the DARPA Robotics Challenge Finals.

Results showing the effect of outlier filtering based on point cloud overlap analysis

are shown in Figure B.1.
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